早教吧作业答案频道 -->数学-->
Sin(π/n)×sin(2π/n)×sin(3π/n)×…×sin[(n-1)π/n]=n×2^(1-n)这等式怎么证?大概要从哪个方面入手?
题目详情
Sin(π/n) ×sin(2π/n) ×sin(3π/n) ×…×sin[(n-1)π/n]=n×2^(1-n) 这等式怎么证?
大概要从哪个方面入手?
大概要从哪个方面入手?
▼优质解答
答案和解析
sin(π/n) ×sin(2π/n) ×sin(3π/n) ×…×sin[(n-1)π/n]=n×2^(1-n)
用复数
w=cos(2π/n)+isin(2π/n)
w'=cos(2π/n)-isin(2π/n)
z^n=1
(z-1)(z^(n-1)+z^(n-2)+……+z+1)=0
z^(n-1)+z^(n-2)+……+z+1=(z-w)(z-w^2)(z-w^3)……(z-w^(n-1))
令
z=1
n=(1-w)(1-w^2)(1-w^3)…(1-w^(n-1))
1-w^k=2sinkπ/n(sinkπ/n+icoskπ/n)
|1-w^k|=|2sinkπ/n(sinkπ/n+icoskπ/n)|=|2sinkπ/n||(sinkπ/n+icoskπ/n)|=|2sinkπ/n|=2sin(kπ/n)
取模
|n|=|(1-w)(1-w^2)(1-w^3)…(1-w^(n-1))|
|n|=|(1-w)||(1-w^2)||(1-w^3)|…|(1-w^(n-1))|
n=2^(n-1)sin(π/n)sin(2π/n)……sin[(n-1)π/n]
得证啦,加分!
用复数
w=cos(2π/n)+isin(2π/n)
w'=cos(2π/n)-isin(2π/n)
z^n=1
(z-1)(z^(n-1)+z^(n-2)+……+z+1)=0
z^(n-1)+z^(n-2)+……+z+1=(z-w)(z-w^2)(z-w^3)……(z-w^(n-1))
令
z=1
n=(1-w)(1-w^2)(1-w^3)…(1-w^(n-1))
1-w^k=2sinkπ/n(sinkπ/n+icoskπ/n)
|1-w^k|=|2sinkπ/n(sinkπ/n+icoskπ/n)|=|2sinkπ/n||(sinkπ/n+icoskπ/n)|=|2sinkπ/n|=2sin(kπ/n)
取模
|n|=|(1-w)(1-w^2)(1-w^3)…(1-w^(n-1))|
|n|=|(1-w)||(1-w^2)||(1-w^3)|…|(1-w^(n-1))|
n=2^(n-1)sin(π/n)sin(2π/n)……sin[(n-1)π/n]
得证啦,加分!
看了 Sin(π/n)×sin(2...的网友还看了以下:
Matlab中循环语句为什么每步都出来?M文件:disp("示例1:")for n=10:-1:1 2020-05-13 …
关于极限的题目a(n)=n*sin(∏/n)(n>=1)当n→∞时,求a(n)(n)为下标a(n) 2020-05-14 …
lim 1/n(sinπ/n+sin2π/n+.+sinnπ/n) n 趋向于正无穷 2020-05-16 …
lim i/n(sinπ/n+sin2π/n+.+sinnπ/n) n 趋向于正无穷 2020-05-16 …
已知:f(n)=sin(nπ/4),求:f(1)+f(2)+…+f(100).为什麽f(n)=-f 2020-05-20 …
为什么sinπ/n+sin2π/n.+sin(n-1)π/n=cotπ/2n?谢谢. 2020-06-13 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …
级数通项是1/lnn,n从2开始循环,是发散的?如题李永乐书上原题,P325例11.13,(II)原 2020-11-18 …
f(n)=sin^na+cos^na,(n次方),试用f(n-1),f(n)和f(1)表示f(n+1 2020-12-07 …