早教吧 育儿知识 作业答案 考试题库 百科 知识分享

为什么sinπ/n+sin2π/n.+sin(n-1)π/n=cotπ/2n?谢谢.

题目详情
为什么sinπ/n+sin2π/n.+sin(n-1)π/n=cotπ/2n?
谢谢.
▼优质解答
答案和解析
2 sin [π/(2n)]·sin(π/n)= cos [π/n -π/(2n)]- cos [π/n +π/(2n)]= cos [π/(2n)]- cos [3π/(2n)]2 sin [π/(2n)]·sin(2π/n)= cos [2π/n -π/(2n)]- cos [2π/n+π/(2n)]= cos [3π/(2n)]- cos [5π/(2n)]2 sin [π/(2n)]·sin(3π/n)= cos [3π/n -π/(2n)]- cos [3π/n +π/(2n)]= cos [5π/(2n)]- cos [7π/(2n)]……2 sin [π/(2n)]·sin[(n-1)π/n]= cos [(n-1)π/n -π/(2n)]- cos [(n-1)π/n +π/(2n)]= cos [(2n-3)π/(2n)]- cos [(2n-1)π/(2n)]故:2 sin [π/(2n)] ·{sin(π/n)+sin(2π/n)+.+sin[(n-1)π/n]}= cos [π/(2n)]- cos [(2n-1)π/(2n)]= cos [π/(2n)]- cos [π-π/(2n)]=2 cos [π/(2n)]故:sin(π/n)+sin(2π/n)+.+sin[(n-1)π/n]= cos[π/(2n)]/ sin [π/(2n)]= cot [π/(2n)]