早教吧作业答案频道 -->其他-->
四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H.(1)如图1,当点E、F在线段AD上时,①求证:∠D
题目详情
四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H.
(1)如图1,当点E、F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE的位置关系,并加以证明;
(2)如图2,在(1)条件下,连接HO,试说明HO平分∠BHG;
(3)当点E、F运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出∠BHO的度数.

(1)如图1,当点E、F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE的位置关系,并加以证明;
(2)如图2,在(1)条件下,连接HO,试说明HO平分∠BHG;
(3)当点E、F运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出∠BHO的度数.

▼优质解答
答案和解析
(1)①证明:∵四边形ABCD为正方形,
∴DA=DC,∠ADB=∠CDB=45°,
在△ADG和△CDG中
,
∴△ADG≌△CDG(SAS),
∴∠DAG=∠DCG;
②AG⊥BE.理由如下:
∵四边形ABCD为正方形,
∴AB=DC,∠BAD=∠CDA=90°,
在△ABE和△DCF中
,
∴△ABE≌△DCF(SAS),
∴∠ABE=∠DCF,
∵∠DAG=∠DCG,
∴∠DAG=∠ABE,
∵∠DAG+∠BAG=90°,
∴∠ABE+∠BAG=90°,
∴∠AHB=90°,
∴AG⊥BE;
(2)由(1)可知AG⊥BE.
如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,则四边形OMHN为矩形.

∴∠MON=90°,
又∵OA⊥OB,
∴∠AON=∠BOM.
∵∠AON+∠OAN=90°,∠BOM+∠OBM=90°,
∴∠OAN=∠OBM.
在△AON与△BOM中,
∴△AON≌△BOM(ASA).
∴OM=ON,
∴矩形OMHN为正方形,
∴HO平分∠BHG.
(3)将图形补充完整,如答图2示,∠BHO=45°.

与(1)同理,可以证明AG⊥BE.
过点O作OM⊥BE于点M,ON⊥AG于点N,
与(2)同理,可以证明△AON≌△BOM,
可得OMHN为正方形,所以HO平分∠BHG,
∴∠BHO=45°.
∴DA=DC,∠ADB=∠CDB=45°,
在△ADG和△CDG中
|
∴△ADG≌△CDG(SAS),
∴∠DAG=∠DCG;
②AG⊥BE.理由如下:
∵四边形ABCD为正方形,
∴AB=DC,∠BAD=∠CDA=90°,
在△ABE和△DCF中
|
∴△ABE≌△DCF(SAS),
∴∠ABE=∠DCF,
∵∠DAG=∠DCG,
∴∠DAG=∠ABE,
∵∠DAG+∠BAG=90°,
∴∠ABE+∠BAG=90°,
∴∠AHB=90°,
∴AG⊥BE;
(2)由(1)可知AG⊥BE.
如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,则四边形OMHN为矩形.

∴∠MON=90°,
又∵OA⊥OB,
∴∠AON=∠BOM.
∵∠AON+∠OAN=90°,∠BOM+∠OBM=90°,
∴∠OAN=∠OBM.
在△AON与△BOM中,
|
∴△AON≌△BOM(ASA).
∴OM=ON,
∴矩形OMHN为正方形,
∴HO平分∠BHG.
(3)将图形补充完整,如答图2示,∠BHO=45°.

与(1)同理,可以证明AG⊥BE.
过点O作OM⊥BE于点M,ON⊥AG于点N,
与(2)同理,可以证明△AON≌△BOM,
可得OMHN为正方形,所以HO平分∠BHG,
∴∠BHO=45°.
看了 四边形ABCD是正方形,AC...的网友还看了以下:
如图所示的直角坐标系中,四边形ABCD各个顶点的坐标分别为A(-1,3),B(-3,2),C(-4 2020-04-27 …
如图,四边形ABCD是平行四边形,点E、F分别为AD、BC边上的点,且AE=CF求证:四边形BED 2020-05-16 …
如图,在三角形abc中,边ab,bc的垂直平分线相交于点p 求证pa=pb=pc 点p是否也在边a 2020-05-16 …
在三角形ABC中,A=30度,边a=4求边b能使三角形无解 2020-06-03 …
在四边形ABCD中,BC>BA,AD=DC,BD为角ABC的角平分线.求证:角A+角C=180度四 2020-06-03 …
在Rt△ABC中,∠ACB=90°,点D在AB边上,AD=BD,过点D作射线DH,交BC边于点M. 2020-06-12 …
证明:(1)如图,在△ABC中,∠ACB=90°,∠A=30°,求证:AB=2BC(2)如图,在△ 2020-06-13 …
如图,在网格中有一个四边形图案OABC.(1)请画出此图绕O顺时针方向旋转90°,180°,270 2020-07-01 …
如图,已知△ABC,(1)根据要求作图,在边BC上求作一点D,使得点D到点A、B的距离相等,在边A 2020-07-21 …
如图,邻边不等的矩形花圃A左CD,它的d边AD利用已有的围墙,另外三边所围的栅栏的总长度是dm.( 2020-07-30 …