早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图①,将直角梯形OABC放在平面直角坐标系中,已知OA=5,OC=4,BC∥OA,BC=3,点E在OA上,且OE=1,连接OB、BE.(1)求证:∠OBC=∠ABE;(2)如图②,过点B作BD⊥x轴于D,点P在直线BD上运动,连

题目详情
如图①,将直角梯形OABC放在平面直角坐标系中,已知OA=5,OC=4,BC∥OA,BC=3,点E在OA上,且OE=1,连接OB、BE.
(1)求证:∠OBC=∠ABE;
(2)如图②,过点B作BD⊥x轴于D,点P在直线BD上运动,连接PC、PE、PA和CE.
①当△PCE的周长最短时,求点P的坐标;
②如果点P在x轴上方,且满足S△CEP:S△ABP=2:1,求DP的长.
▼优质解答
答案和解析
(1)∵OC=4,BC=3,∠OCB=90°,
∴OB=5.
∵OA=5,OE=1,
∴AE=4,AB=
42+(5−3)2
=2
5

AB
AE
=
OA
AB

又∵∠OAB=∠BAE,
∴△OAB∽△BAE,
∴∠AOB=∠ABE.
∵BC∥OA,
∴∠OBC=∠AOB,
∠OBC=∠ABE;

(2)①∵BD⊥x轴,ED=AD=2,
∴E与A关于BD对称,
∴当点C、P、A三点共线时,△PCE的周长最短.
∵PD∥OC,
AD
AO
=
PD
OC
,即
2
5
=
PD
4

∴PD=
8
5

∴点P的坐标为(3,
8
5
);
②设PD=t.
当0<PD≤4时,
∵S△CEP=S梯形OCPD-S△OCE-S△DEP=
1
2
(t+4)×3-
1
2
×4×1-
1
2
×2t=
1
2
t+4,
S△ABP=
1
2
×2(4-t)=4-t,
∵S△CEP:S△ABP=2:1,
∴(
1
2
t+4):(4-t)=2:1,
∴t=DP=
8
5

当PD>4时,
∵S△CEP=S梯形OCPD-S△OCE-S△DEP=
1
2
(t+4)×3-
1
2
×4×1-
1
2
×2t=
1
2
t+4,
S△ABP=
1
2
×2(t-4)=t-4,
∵S△CEP:S△ABP=2:1,
∴(
1
2
t+4):(t-4)=2:1,
∴t=DP=8.
故所求DP的长
8
5
或8.