早教吧作业答案频道 -->数学-->
已知:直线l:y=x+2与过点(0,-2),且与平行于x轴的直线交于点A,点A关于直线x=-1的对称点为点B.(1)求A,B两点的坐标;(2)若抛物线y=-x2+bx+c经过A,B两点,求抛物线解析式;(3)若抛
题目详情
已知:直线l:y=x+2与过点(0,-2),且与平行于x轴的直线交于点A,点A关于直线x=-1的对称点为点B.
(1)求A,B两点的坐标;
(2)若抛物线y=-x2+bx+c经过A,B两点,求抛物线解析式;
(3)若抛物线y=-x2+bx+c的顶点在直线l上移动,当抛物线与线段AB有一个公共点时,求抛物线顶点横坐标t的取值范围.
(1)求A,B两点的坐标;
(2)若抛物线y=-x2+bx+c经过A,B两点,求抛物线解析式;
(3)若抛物线y=-x2+bx+c的顶点在直线l上移动,当抛物线与线段AB有一个公共点时,求抛物线顶点横坐标t的取值范围.
▼优质解答
答案和解析
(1)由题可知A点的纵坐标为-2,
∵点A在直线l:y=x+2上,
∴A(-4,-2),
由对称性可知B(2,-2);
(2)∵抛物线y=-x2+bx+c过点A、B,
∴
,
解得:
,
∴抛物线解析式为y=-x2-2x+6;
(3)∵抛物线y=-x2+bx+c顶点在直线y=x+2上,
由题可知,设抛物线顶点坐标为(t,t+2),
∴抛物线解析式可化为y=-(x-t)2+t+2.
把A(-4,-2)代入解析式可得-2=-(-4-t)2+t+2,
解得:t=-3或t=-4.
∴-4≤t≤-3,
把B(2,-2)代入解析式可得-2=-(2-t)2+t+2.
解得:t=0或t=5,
∴0<t≤5.
综上可知t的取值范围时-4≤t≤-3或0<t≤5.
∵点A在直线l:y=x+2上,
∴A(-4,-2),
由对称性可知B(2,-2);
(2)∵抛物线y=-x2+bx+c过点A、B,
∴
|
解得:
|
∴抛物线解析式为y=-x2-2x+6;
(3)∵抛物线y=-x2+bx+c顶点在直线y=x+2上,
由题可知,设抛物线顶点坐标为(t,t+2),
∴抛物线解析式可化为y=-(x-t)2+t+2.
把A(-4,-2)代入解析式可得-2=-(-4-t)2+t+2,
解得:t=-3或t=-4.
∴-4≤t≤-3,
把B(2,-2)代入解析式可得-2=-(2-t)2+t+2.
解得:t=0或t=5,
∴0<t≤5.
综上可知t的取值范围时-4≤t≤-3或0<t≤5.
看了 已知:直线l:y=x+2与过...的网友还看了以下:
一道算是初高中衔接题x²-a[a+1]x+a²+a<0过程具体点x²-a[a+1]x+a²+a<0 2020-05-17 …
经过点P(a,b)且垂直于x轴(平行于y轴)的直线可表示为经过点P(a,b)且垂直于y轴(平行于x 2020-05-23 …
设f(x)是定义在(0,正无穷)上的函数,且f(x)>0,对任意a>0,b>0,若经过点(a,f( 2020-06-18 …
一束光线从a(0,3)射出,经过x轴上的点c(3,0)反射后经过点B(a,5).求a的值求光线从点 2020-07-04 …
如图,△OAB是边长为2的等边三角形,直线CD经过点A交x轴于点C,交y轴于点D.角ACB=301 2020-07-19 …
已知抛物线y=ax2+bx+c开口向上且经过点(1,1),双曲线y=12x经过点(a,bc),给出 2020-07-29 …
求导问题若f(x)在点x=a的邻域内有定义,且除去点x=a外恒有[f(x)-f(a)]/(x-a) 2020-07-31 …
二次函数已知抛物线Y=X2+X+b2经过点(a,1/4)和点(-a,y1),y1是多少?已知抛物线Y 2020-10-31 …
已知函数f(x)=x^3-x(1)求曲线y=f(x)在M(t,f(t))处(2)设a>0,如果过点P 2020-11-03 …
函数y=f(x)在x=a点连续是f(x)在点x=a点有极限的什么条件,详见下:函数y=f(x)在x= 2021-02-13 …