早教吧作业答案频道 -->数学-->
急、、数学在线提问、、关于九年级数学抛物线已知抛物线的最高点坐标为(3,-1),在y轴上的截距(图像与y轴交点的纵坐标)为-4,①求抛物线解析式②当x为何值时,函数y>0?③当x为何值时,
题目详情
急、、数学在线提问、、关于九年级数学抛物线
已知抛物线的最高点坐标为(3,-1),在y轴上的截距(图像与y轴交点的纵坐标)为-4,①求抛物线解析式②当x为何值时,函数y>0?③当x为何值时,函数y<0?
其实我也做出来了、但是解析式仅在第四象限,好像只有y<0啊、、
要明白点的,第一问无所谓了,关键是第二、三问的答案
切确答案
已知抛物线的最高点坐标为(3,-1),在y轴上的截距(图像与y轴交点的纵坐标)为-4,①求抛物线解析式②当x为何值时,函数y>0?③当x为何值时,函数y<0?
其实我也做出来了、但是解析式仅在第四象限,好像只有y<0啊、、
要明白点的,第一问无所谓了,关键是第二、三问的答案
切确答案
▼优质解答
答案和解析
①
设抛物线解析式为:y=ax^2+bx+c
由最高点坐标为(3,-1),得到:
对称轴:-b/2a=3
最高点:-1=9a+3b+c
由y轴截距为-4,得到:
c=-4
于是一共得到3个方程,3个未知数,解出来abc就成了.注意抛物线有最高点,所以a是负数.
②
这就是求抛物线在x轴以上的部分和以下的部分.先求ax^2+bx+c=0时,x的2个解,即抛物线与x轴交点.可以用一元二次方程根与系数关系得到.x=(-b±根(b^2-4ac))/2a
由于这个抛物线开口向下,所以在两根之间的部分,y>0;两根之外的部分,y<0.
补充:
明白你意思了.那就是ax^2+bx+c=0中,b^2-4ac<0,方程无解,即函数与x轴没有交点.所以当x∈空集时,y>0;当x∈R(全体实数)时,y<0.
设抛物线解析式为:y=ax^2+bx+c
由最高点坐标为(3,-1),得到:
对称轴:-b/2a=3
最高点:-1=9a+3b+c
由y轴截距为-4,得到:
c=-4
于是一共得到3个方程,3个未知数,解出来abc就成了.注意抛物线有最高点,所以a是负数.
②
这就是求抛物线在x轴以上的部分和以下的部分.先求ax^2+bx+c=0时,x的2个解,即抛物线与x轴交点.可以用一元二次方程根与系数关系得到.x=(-b±根(b^2-4ac))/2a
由于这个抛物线开口向下,所以在两根之间的部分,y>0;两根之外的部分,y<0.
补充:
明白你意思了.那就是ax^2+bx+c=0中,b^2-4ac<0,方程无解,即函数与x轴没有交点.所以当x∈空集时,y>0;当x∈R(全体实数)时,y<0.
看了 急、、数学在线提问、、关于九...的网友还看了以下:
文科数学抛物线方程已知顶点在原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为根号15,求抛 2020-06-03 …
肇庆市高二上学期理科要学必修几?请详细说明.数学必修5已经在高一学了所有的必修都学了其他还差必修2 2020-06-04 …
大学物理学:质点运动已知质点沿x轴作直线运动,其运动方程为x=2+6t(2平方)-2t(3立方), 2020-06-11 …
如图,抛物线y=ax²+bx+c(a>0交x轴于A,B两点,交y轴于C点,A点在B点的左侧,已知B 2020-06-14 …
已知顶点在原点,焦点在x轴上的抛物线被直线Y=2x+1截得的玄长为√15若抛物线与直线y=2x-5 2020-07-02 …
抛物线的求法已知两点坐标和其中一点的切线角度(与水平线的夹角)是否可以绘制这个抛物线呢?如果不可以 2020-07-24 …
如图,已知与x轴交于点A(1,0)和B(5,0)的抛物线的顶点为C(3,4),抛物线l2与l1关于 2020-07-30 …
生物学的研究已经从定性走向定量,用数据定量表示生物学的特性并统计分析是生物学研究的方向.请结合高中生 2020-11-02 …
结合相关生物学点,对下列成语、谚语和古诗词描述的情景进行的解释,不正确的是()A.“螳螂捕蝉,黄雀在 2020-11-05 …
给出一纯肉桂酸(已知熔点为133度),另测出某未知物的熔点为132.3-133.0,如何判断该未知物 2020-11-27 …