早教吧作业答案频道 -->数学-->
∫(0到2)xdx/(x^2-2x+2)^2令x=1+tanu后得出原式=2∫(0到π/4)(cosu)^2du?
题目详情
∫(0到2)xdx/(x^2-2x+2)^2 令x=1+tanu 后得出 原式=2 ∫(0到π /4)(cosu)^2du?
▼优质解答
答案和解析
∫[0,2]xdx/(x^2-2x+2)^2
=∫[0,2] (1/2)(2x-2)dx/(x^2-2x+2)^2+∫[0,2]dx/(x^2-2x+2)^2
=(1/2)∫[0,2]d(x^2-2x+2)/(x^2-2x+2)^2 +∫[0,2]d(x-1)/[(x-1)^2+1]^2
=(-1/2)(1/(x^2-2x+2))|[0,2] +(1/2)arctan(x-1)|[0,2] +(1/2)(x-1)/(x^2-2x+2)|[0,2]
=(1/2)*(π/2)+1/2
..x=1+tanu,d(x-1)=secu^2du
∫d(x-1)/[(x-1)^2+1]^2=∫cosu^2du=(1/2)∫(1+cos2u)du=(1/2)u+(1/2)sinucosu
=(1/2)arctan(x-1)+(1/2)(x-1)/(x^2-2x+2)
=∫[0,2] (1/2)(2x-2)dx/(x^2-2x+2)^2+∫[0,2]dx/(x^2-2x+2)^2
=(1/2)∫[0,2]d(x^2-2x+2)/(x^2-2x+2)^2 +∫[0,2]d(x-1)/[(x-1)^2+1]^2
=(-1/2)(1/(x^2-2x+2))|[0,2] +(1/2)arctan(x-1)|[0,2] +(1/2)(x-1)/(x^2-2x+2)|[0,2]
=(1/2)*(π/2)+1/2
..x=1+tanu,d(x-1)=secu^2du
∫d(x-1)/[(x-1)^2+1]^2=∫cosu^2du=(1/2)∫(1+cos2u)du=(1/2)u+(1/2)sinucosu
=(1/2)arctan(x-1)+(1/2)(x-1)/(x^2-2x+2)
看了 ∫(0到2)xdx/(x^2...的网友还看了以下:
定积分Asin^2(t/T)dt是多少原题是从0-T,定积分Asin^2(t/T)dt=1求A的值 2020-06-10 …
刘老师,您好。有种类型的题目一直没弄懂。是关于基的问题已知α1=(1,1,1)T,α2=(0,1, 2020-06-23 …
用秩判别相关∝1=(2,4,1,1,0)∧T,∝2=(1,-2,0,1,1)∧T,∝3=(1,3, 2020-07-12 …
解方程式:(x+y)*t=1(1.2x+y)*0.9t=1(x+0.75y)(t+2.5)=1求t 2020-07-16 …
二次型的化标准型的问题!设XTAX=x1^2+4*x2^2+x3^2+2aX1X2+2bX1X3+ 2020-07-31 …
设fx是以2为周期的连续函数,已知对任意实数t,∫(t+2—>t)fxdx=∫(2-->0)fxd 2020-08-02 …
如图所示是一列简谐波在t=0时的波形和传播距离.波沿x轴的正向传播,已知从t=0到t=2.2s时间内 2020-12-15 …
已知α1=(1,0,1)Tα2=(0,1,1)Tα3=(1,3,5)T不能由β1=(1,1,1)T, 2020-12-23 …
特征向量必须就一种答案吗?例如在矩阵A=(1-2-2,-21-2,-2-21)中,当λ=3时,答案给 2020-12-31 …
A为3阶实对称矩阵,r(A)=2,α1=(0,1,0)T,α2=(-1,0,1)T为A的对应特征值λ 2021-02-10 …