早教吧作业答案频道 -->数学-->
x>-1,x≠0,n∈N,n≥2,求证:(1+x)n>1+nx
题目详情
x>-1,x≠0,n∈N,n≥2,求证:(1+x)n>1+nx
▼优质解答
答案和解析
)当n=2时,左边=(1+x)2=1+2x+x2,右边=1+2x,因x2>0,则原不等式成立.
(在这里,一定要强调之所以左边>右边,关键在于x2>0是由已知条件x≠0获得,为下面证明做铺垫)
(2)假设n=k时(k≥2),不等式成立,即(1+x)k>1+kx.
(1+kx)(1+x)≥1+(k+1)x.显然,上式中“=”不成立.故只需证:(1+kx)(1+x)>1+(k+1)x.
当n=k+1时,因为x>-1,所以1+x>0,于是
左边=(1+x)k+1=(1+x)k(1+x)>(1+x)(1+kx)=1+(k+1)x+kx2; 右边=1+(k+1)x.
因为kx2>0,所以左边>右边,即(1+x)k+1>1+(k+1)x.这就是说,原不等式当n=k+1时也成立.
根据(1)和(2),原不等式对任何不小于2的自然数n都成立.
囡囡只有这个办法了,可能不太好啊.
(在这里,一定要强调之所以左边>右边,关键在于x2>0是由已知条件x≠0获得,为下面证明做铺垫)
(2)假设n=k时(k≥2),不等式成立,即(1+x)k>1+kx.
(1+kx)(1+x)≥1+(k+1)x.显然,上式中“=”不成立.故只需证:(1+kx)(1+x)>1+(k+1)x.
当n=k+1时,因为x>-1,所以1+x>0,于是
左边=(1+x)k+1=(1+x)k(1+x)>(1+x)(1+kx)=1+(k+1)x+kx2; 右边=1+(k+1)x.
因为kx2>0,所以左边>右边,即(1+x)k+1>1+(k+1)x.这就是说,原不等式当n=k+1时也成立.
根据(1)和(2),原不等式对任何不小于2的自然数n都成立.
囡囡只有这个办法了,可能不太好啊.
看了 x>-1,x≠0,n∈N,n...的网友还看了以下:
命题“若x>1,则x>0”的否命题是()A.若x≤1,则x≤0B.若x≤1,则x>0C.若x>1, 2020-05-21 …
一些二次根式题1.若√x-∏+√∏-x+(绝对值2y-1)=5,则x=y=2.若√x+y(√(x+ 2020-05-21 …
高中必修1函数题定义在R上的函数y=f(x),f(x)≠0.当x>0时,f(x)>1.且对于任意的 2020-06-02 …
已知函数f(x)的定义域是(0,+∞),当x>1时,f(x)>0.又f(xy)=f(x)+f(y) 2020-06-25 …
直线y=2x+2与y轴交于点A,与反比例函数y=k/x(x>0)的图像交于点M,过点M作MH⊥x轴 2020-06-27 …
设定义在(0,+∞)上的函数f(x)满足;对任意a,b∈(0,+∞),都有f(b)=f(a)-f( 2020-07-26 …
设全集U=R,A={x|x>1},B={x|x+a<0}B包含不等于CRACRA是A在R中的补集C 2020-07-30 …
已知函数f(x)=(1-x)e^x-1(1)求证:当x>0时,f(x)<0;(2)数列xn满足xne 2020-10-31 …
高一数学若非零函数f(x)对任意实数a,b,均有f(a+b)=f(a)*f(b)成立,且当x<0时, 2020-12-07 …
(2011?双流县三模)设A={x|0<x<2},B={x|x>1},则A∩B=()A.{x|x>1 2020-12-18 …