早教吧作业答案频道 -->数学-->
(2012•武昌区模拟)如图,已知抛物线C:y2=4x,过点A(1,2)作抛物线C的弦AP,AQ.(Ⅰ)若AP⊥AQ,证明直线PQ过定点,并求出定点的坐标;(Ⅱ)假设直线PQ过点T(5,-2),请问是否存在
题目详情

(Ⅰ)若AP⊥AQ,证明直线PQ过定点,并求出定点的坐标;
(Ⅱ)假设直线PQ过点T(5,-2),请问是否存在以PQ为底边的等腰三角形APQ?若存在,求出△APQ的个数?如果不存在,请说明理由.
▼优质解答
答案和解析
(Ⅰ)证明:设直线PQ的方程为x=my+n,点P、Q的坐标分别为P(x1,y1),Q(x2,y2).
直线方程代入抛物线方程,消x得y2-4my-4n=0.
由△>0,得m2+n>0,y1+y2=4m,y1•y2=-4n.
∵AP⊥AQ,∴
•
=0,∴(x1-1)(x2-1)+(y1-2)(y2-2)=0.
∴(y1-2)(y2-2)[(y1+2)(y2+2)+16]=0,
∴(y1-2)(y2-2)=0或(y1+2)(y2+2)+16=0.
∴n=2m-1或n=2m+5,∵△>0恒成立,∴n=2m+5.
∴直线PQ的方程为x-5=m(y+2),
∴直线PQ过定点(5,-2).
(Ⅱ)假设存在以PQ为底边的等腰三角形APQ,由第(Ⅰ)问可知,将n用2m+5代换得直线PQ的方程为x=my+2m+5.设点P、Q的坐标分别为P(x1,y1),Q(x2,y2),直线方程代入抛物线方程,消x得y2-4my-8m-20=0.
∴y1+y2=4m,y1•y2=-8m-20.
∴PQ的中点坐标为(2m2+2m+5,2m).
由已知得
=−m,即m3+m2+3m-1=0.
设g(m)=m3+m2+3m-1,则g′(m)=3m2+2m+3>0,
∴g(m)在R上是增函数.
又g(0)=-1<0,g(1)=4>0,∴g(m)在(0,1)内有一个零点.
∴函数g(m)在R上有且只有一个零点,即方程m3+m2+3m-1=0在R上有唯一实根.
所以满足条件的等腰三角形有且只有一个.
直线方程代入抛物线方程,消x得y2-4my-4n=0.
由△>0,得m2+n>0,y1+y2=4m,y1•y2=-4n.
∵AP⊥AQ,∴
AP |
AQ |
∴(y1-2)(y2-2)[(y1+2)(y2+2)+16]=0,
∴(y1-2)(y2-2)=0或(y1+2)(y2+2)+16=0.
∴n=2m-1或n=2m+5,∵△>0恒成立,∴n=2m+5.
∴直线PQ的方程为x-5=m(y+2),
∴直线PQ过定点(5,-2).
(Ⅱ)假设存在以PQ为底边的等腰三角形APQ,由第(Ⅰ)问可知,将n用2m+5代换得直线PQ的方程为x=my+2m+5.设点P、Q的坐标分别为P(x1,y1),Q(x2,y2),直线方程代入抛物线方程,消x得y2-4my-8m-20=0.
∴y1+y2=4m,y1•y2=-8m-20.
∴PQ的中点坐标为(2m2+2m+5,2m).
由已知得
2m−2 |
2m2+2m+5−1 |
设g(m)=m3+m2+3m-1,则g′(m)=3m2+2m+3>0,
∴g(m)在R上是增函数.
又g(0)=-1<0,g(1)=4>0,∴g(m)在(0,1)内有一个零点.
∴函数g(m)在R上有且只有一个零点,即方程m3+m2+3m-1=0在R上有唯一实根.
所以满足条件的等腰三角形有且只有一个.
看了 (2012•武昌区模拟)如图...的网友还看了以下:
二次函数.已知抛物线的顶点为P(3,-2),且在X轴上截得的线段AB长为4.1)求抛物线解析式2)抛 2020-03-30 …
抛物线y=ax2+bx+c经过A(4,0)、B(1,0)、C(0,-2)三点.(1)求出抛物性的解 2020-04-26 …
25.抛物线与x轴交于A、B两点,与y轴正半轴交于点C,已知点A(1,0),OB=OC.(1)求此 2020-04-27 …
数学(二次函数)1.已知抛物线过A(-2,0),B(1,0),C(0,2)三点在这条抛物线上是否存 2020-05-13 …
如图,抛物线的顶点为A(-3,-3),此抛物线交x轴于O、B两点.(1)求此抛物线的解析式;(2) 2020-05-17 …
已知AB过x轴上的点A(3/2,0),且与抛物线y=ax^2相交于B,C两点,点B的坐标(1,1) 2020-05-23 …
已知抛物线经过A(-2,0),B(1,0)和C(0,2)三点第一问:球这条抛物线的表达式第二问:若 2020-06-06 …
已知抛物线与x轴交于A(-1,0)、B(x2,0),交y轴的正方向于点C,且S△ABC=3.(1) 2020-06-14 …
有一个二次函数的题目,请各位帮帮我~~~~如图,已知抛物线的顶点为点A(3,2),且经过原点o,与 2020-06-27 …
已知抛物线过A(-2,0)、B(1,0)、C(0,2)三点,(1)求这条抛物线的解析式;(2)在这 2020-08-01 …