早教吧作业答案频道 -->数学-->
(2012•武昌区模拟)如图,已知抛物线C:y2=4x,过点A(1,2)作抛物线C的弦AP,AQ.(Ⅰ)若AP⊥AQ,证明直线PQ过定点,并求出定点的坐标;(Ⅱ)假设直线PQ过点T(5,-2),请问是否存在
题目详情

(Ⅰ)若AP⊥AQ,证明直线PQ过定点,并求出定点的坐标;
(Ⅱ)假设直线PQ过点T(5,-2),请问是否存在以PQ为底边的等腰三角形APQ?若存在,求出△APQ的个数?如果不存在,请说明理由.
▼优质解答
答案和解析
(Ⅰ)证明:设直线PQ的方程为x=my+n,点P、Q的坐标分别为P(x1,y1),Q(x2,y2).
直线方程代入抛物线方程,消x得y2-4my-4n=0.
由△>0,得m2+n>0,y1+y2=4m,y1•y2=-4n.
∵AP⊥AQ,∴
•
=0,∴(x1-1)(x2-1)+(y1-2)(y2-2)=0.
∴(y1-2)(y2-2)[(y1+2)(y2+2)+16]=0,
∴(y1-2)(y2-2)=0或(y1+2)(y2+2)+16=0.
∴n=2m-1或n=2m+5,∵△>0恒成立,∴n=2m+5.
∴直线PQ的方程为x-5=m(y+2),
∴直线PQ过定点(5,-2).
(Ⅱ)假设存在以PQ为底边的等腰三角形APQ,由第(Ⅰ)问可知,将n用2m+5代换得直线PQ的方程为x=my+2m+5.设点P、Q的坐标分别为P(x1,y1),Q(x2,y2),直线方程代入抛物线方程,消x得y2-4my-8m-20=0.
∴y1+y2=4m,y1•y2=-8m-20.
∴PQ的中点坐标为(2m2+2m+5,2m).
由已知得
=−m,即m3+m2+3m-1=0.
设g(m)=m3+m2+3m-1,则g′(m)=3m2+2m+3>0,
∴g(m)在R上是增函数.
又g(0)=-1<0,g(1)=4>0,∴g(m)在(0,1)内有一个零点.
∴函数g(m)在R上有且只有一个零点,即方程m3+m2+3m-1=0在R上有唯一实根.
所以满足条件的等腰三角形有且只有一个.
直线方程代入抛物线方程,消x得y2-4my-4n=0.
由△>0,得m2+n>0,y1+y2=4m,y1•y2=-4n.
∵AP⊥AQ,∴
AP |
AQ |
∴(y1-2)(y2-2)[(y1+2)(y2+2)+16]=0,
∴(y1-2)(y2-2)=0或(y1+2)(y2+2)+16=0.
∴n=2m-1或n=2m+5,∵△>0恒成立,∴n=2m+5.
∴直线PQ的方程为x-5=m(y+2),
∴直线PQ过定点(5,-2).
(Ⅱ)假设存在以PQ为底边的等腰三角形APQ,由第(Ⅰ)问可知,将n用2m+5代换得直线PQ的方程为x=my+2m+5.设点P、Q的坐标分别为P(x1,y1),Q(x2,y2),直线方程代入抛物线方程,消x得y2-4my-8m-20=0.
∴y1+y2=4m,y1•y2=-8m-20.
∴PQ的中点坐标为(2m2+2m+5,2m).
由已知得
2m−2 |
2m2+2m+5−1 |
设g(m)=m3+m2+3m-1,则g′(m)=3m2+2m+3>0,
∴g(m)在R上是增函数.
又g(0)=-1<0,g(1)=4>0,∴g(m)在(0,1)内有一个零点.
∴函数g(m)在R上有且只有一个零点,即方程m3+m2+3m-1=0在R上有唯一实根.
所以满足条件的等腰三角形有且只有一个.
看了 (2012•武昌区模拟)如图...的网友还看了以下:
一个初三函数题.,紧急求助..在线等已知抛物线y=-x^2+mx-m+21.设抛物线与x轴的两个交点 2020-03-30 …
二次函数E(3,0)为圆心以5为半径的园E与X轴交于C点,抛物线Y=aX²+bX+c经过A,B,C 2020-05-13 …
过第四象限的直线与抛物线交于点A(0,3)和和点C,已知点C是抛物线的顶点,且抛物线的对称轴与Y粥 2020-05-16 …
已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同,顶点在直线x=1上,且顶点到 2020-06-12 …
已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同,顶点在直线x=1上,且顶点到 2020-07-26 …
已知抛物线C经过(-5,0)(0,5/2)(1,6)三点,直线L的解析式是Y=2X-3.求抛物线C 2020-07-26 …
如图1,在平面直角坐标系中,直线y=-x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1, 2020-07-26 …
已知:抛物线Y=X方-6x+5与直线y=-2x+5相交于点C(0,5)、E(4,-3)抛物线与x轴 2020-07-26 …
在平面直角坐标系中,已知点A(-2,0),B(2,0),C(3,5).(1)求过点A,C的直线解析 2020-07-30 …
抛硬币概率的现实意义是什么?假设抛硬币正反的概率都是1/2,那么连续5次正的概率就是1/(2^5)= 2020-12-03 …