早教吧作业答案频道 -->其他-->
An=5^n+2*3^n-1+1(n属于正整数)能被8整除数学归纳法证明
题目详情
An=5^n+2*3^n-1+1(n属于正整数)能被8整除 数学归纳法证明
▼优质解答
答案和解析
n=1
a1=5+2+1=8 is divisible by 8
Assume p(k) is true
ie
ak = 5^k+ 2(3^(k-1))+1 = 8m ( where m is integer )
when n=k+1
a(k+1)
= 5^(k+1)+ 2(3^(k))+1
= 5(5^k+2(3^(k-1)+1) + 2(3^(k))-10(3^(k-1))-4
=40m+ 2(3^k) - (6+4)3^(k-1) -4
=40m - 4(3^(k-1))-4
=4(20m-3^(k-1)-1)
= 4(2m') ( 3^(k-1) is odd number )
=8m'
is divisible by 8
By principle of MI,it is true for all n
a1=5+2+1=8 is divisible by 8
Assume p(k) is true
ie
ak = 5^k+ 2(3^(k-1))+1 = 8m ( where m is integer )
when n=k+1
a(k+1)
= 5^(k+1)+ 2(3^(k))+1
= 5(5^k+2(3^(k-1)+1) + 2(3^(k))-10(3^(k-1))-4
=40m+ 2(3^k) - (6+4)3^(k-1) -4
=40m - 4(3^(k-1))-4
=4(20m-3^(k-1)-1)
= 4(2m') ( 3^(k-1) is odd number )
=8m'
is divisible by 8
By principle of MI,it is true for all n
看了 An=5^n+2*3^n-1...的网友还看了以下:
对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=a(n+1)-an,(n属 2020-05-13 …
高二用归纳法证明不等式的一道题 Ai>0(i=1,2,3...n) 且A1 +A2+.+An=1证 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
已知数列{an}满足a1=1/4,a2=3/4,a(n+1)=2an-a(n-1)(n>等于2,n 2020-06-27 …
在各项均为正数的数列an中,数列的前n项和Sn满足Sn=1/2(an+1/an)(1)求a1,a2 2020-07-20 …
在各项为正的数列{an}中,数列的前n项和Sn满足Sn=1/2(an+1/an)(1)求a1a2a 2020-08-01 …
若无穷数列{an}满足:①对任意n属于正整数,{a(n)+a(n+2)}/2≤a(n+1);②存在 2020-08-02 …
a1=1/2,a1+a2+...+an=n^2an数学归纳法数列{An}满足A1=1/2,A1+A 2020-08-03 …