早教吧作业答案频道 -->数学-->
利用数学归纳法,证明对于所有正整数n,4n^3-n能被3整除.
题目详情
利用数学归纳法,证明对于所有正整数n,4n^3-n能被3整除.
▼优质解答
答案和解析
4n^3-n=n(2n-1)(2n+1)
现在用完全归纳法证明:
正整数不外乎这么三类
1,3的倍数.可以表示为n=3m(m为正整数)
4n^3-n=n(2n-1)(2n+1)=3m(2n-1)(2n+1) 因为有因数3,所以能被3整除
2,3的倍数多1 .可以表示为n=3m+1(m为正整数)
4n^3-n=n(2n-1)(2n+1)=n(2n-1)(6m+2+1)=n(2n-1)(6m+3)=3n(2n-1)(2m+1) 也有因数3,也能被 3整除
3,3的倍数多2 .可以表示为n=3m+2(m为正整数)
4n^3-n=n(2n-1)(2n+1)=n(6m+4-1)(2n+1)=n(6m+3)(2n+1)=3n(2m+1)(2n+1) 也有因数3,也能被 3整除
因此对于所有正整数n,4n^3-n能被3整除.
(注意:这和你们的两步归纳法不一样,但这也是数学归纳法,叫做完全归纳法)
现在用完全归纳法证明:
正整数不外乎这么三类
1,3的倍数.可以表示为n=3m(m为正整数)
4n^3-n=n(2n-1)(2n+1)=3m(2n-1)(2n+1) 因为有因数3,所以能被3整除
2,3的倍数多1 .可以表示为n=3m+1(m为正整数)
4n^3-n=n(2n-1)(2n+1)=n(2n-1)(6m+2+1)=n(2n-1)(6m+3)=3n(2n-1)(2m+1) 也有因数3,也能被 3整除
3,3的倍数多2 .可以表示为n=3m+2(m为正整数)
4n^3-n=n(2n-1)(2n+1)=n(6m+4-1)(2n+1)=n(6m+3)(2n+1)=3n(2m+1)(2n+1) 也有因数3,也能被 3整除
因此对于所有正整数n,4n^3-n能被3整除.
(注意:这和你们的两步归纳法不一样,但这也是数学归纳法,叫做完全归纳法)
看了 利用数学归纳法,证明对于所有...的网友还看了以下:
复式公式怎么算?复利计算公式F=P*(1+i)N(次方)F:复利终值P:本金i:利率N:利率获取时 2020-06-07 …
利用数学归纳法,证明对于所有正整数n,4n^3-n能被3整除. 2020-06-11 …
已知数列an满足a1=7/3,a(n+1)=3a(n)-4n+2(1)求a2,a3的值(2)证明数 2020-07-09 …
若n是整数,n²-4n-4是完全平方数,那么n的值可能是多少麻烦写出详细过程 2020-07-31 …
复利计算公式F=P*(1+i)^n,其中F:复利终值,P:本金i:利率,N:利率获取时间的整数倍, 2020-08-02 …
1.先化简,再求值:x²-64y²分之2x-x-8y分之1其中x=1y=-¼2.解方程1-x+1分之 2020-10-31 …
一个袋子里面有2n-1个白球,2n个黑球,一次取出n个球,发现都是同一种颜色,则这种颜色都是黑色的概 2020-11-03 …
一个多项式加上xy-2xz得3xz-xy,求这个多项式减去xy-2xz所得的结果[(5m+2n)(5 2020-11-03 …
喜羊羊是一个爱动脑筋的好学生,他在学习的时候发现:当n=1,2,3时,代数式n²-4n的值都是负数. 2020-11-22 …
基本事实:若a的m次方=a的n次方(a>0且a不等于1,m、n是正整数),则m=n,试利用上述基本事 2021-02-01 …