早教吧作业答案频道 -->数学-->
高一数学证明题cosπ/(2n+1)*cos2π/(2n+1)*cos3π/(2n+1)*...*cosnπ/(2n+1)=1/(2^n),n是正整数(要有详细过程哈!~谢谢!~)
题目详情
高一数学证明题
cosπ/(2n+1)*cos2π/(2n+1)*cos3π/(2n+1)*...*cosnπ/(2n+1)=1/(2^n),n是正整数
(要有详细过程哈!~谢谢!~)
cosπ/(2n+1)*cos2π/(2n+1)*cos3π/(2n+1)*...*cosnπ/(2n+1)=1/(2^n),n是正整数
(要有详细过程哈!~谢谢!~)
▼优质解答
答案和解析
由2sina*cosa=sin2a
有sina*cosa=sin2a/2
是故
cosπ/(2n+1)*cos2π/(2n+1)*cos3π/(2n+1)*...*cosnπ/(2n+1)*sinπ/(2n+1)*sin2π/(2n+1)*sin3π/(2n+1)*...*sinnπ/(2n+1)
=1/(2^n)*sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sin2nπ/(2n+1)
下面证明
sinπ/(2n+1)*sin2π/(2n+1)*sin3π/(2n+1)*...*sinnπ/(2n+1)
=sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sin2nπ/(2n+1)
事实上:
n为奇数时:
sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sin2nπ/(2n+1)
=sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sin(n-1)π/(2n+1)
*sin(n+1)π/(2n+1)*...*sin2nπ/(2n+1)
考虑到 sina=sin(π-a)
所以 sin(n+1)π/(2n+1)*...*sin2nπ/(2n+1)=sin(π-(n+1)π/(2n+1))*sin(π-(n+3)π/(2n+1))*...*sin(π-2nπ/(2n+1))
=sinnπ/(2n+1)*sin(n-2)π/(2n+1)*...*sin(π/(2n+1))
因此sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sin(n-1)π/(2n+1)
*sin(n+1)π/(2n+1)*...*sin2nπ/(2n+1)
=sinπ/(2n+1)*sin2π/(2n+1)*sin3π/(2n+1)*...*sinnπ/(2n+1)
n为偶数时:
sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sin2nπ/(2n+1)
=sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sinnπ/(2n+1)
*sin(n+2)π/(2n+1)*...*sin2nπ/(2n+1)
考虑到 sina=sin(π-a)
所以 sin(n+2)π/(2n+1)*...*sin2nπ/(2n+1)=sin(π-(n+2)π/(2n+1))*sin(π-(n+4)π/(2n+1))*...*sin(π-2nπ/(2n+1))
=sin(n-1)π/(2n+1)*sin(n-3)π/(2n+1)*...*sin(π/(2n+1))
因此sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sinnπ/(2n+1)
*sin(n+3)π/(2n+1)*...*sin2nπ/(2n+1)
=sinπ/(2n+1)*sin2π/(2n+1)*sin3π/(2n+1)*...*sinnπ/(2n+1)
于是
sinπ/(2n+1)*sin2π/(2n+1)*sin3π/(2n+1)*...*sinnπ/(2n+1)
=sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sin2nπ/(2n+1)
因此
cosπ/(2n+1)*cos2π/(2n+1)*cos3π/(2n+1)*...*cosnπ/(2n+1)=1/(2^n),n是正整数
有sina*cosa=sin2a/2
是故
cosπ/(2n+1)*cos2π/(2n+1)*cos3π/(2n+1)*...*cosnπ/(2n+1)*sinπ/(2n+1)*sin2π/(2n+1)*sin3π/(2n+1)*...*sinnπ/(2n+1)
=1/(2^n)*sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sin2nπ/(2n+1)
下面证明
sinπ/(2n+1)*sin2π/(2n+1)*sin3π/(2n+1)*...*sinnπ/(2n+1)
=sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sin2nπ/(2n+1)
事实上:
n为奇数时:
sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sin2nπ/(2n+1)
=sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sin(n-1)π/(2n+1)
*sin(n+1)π/(2n+1)*...*sin2nπ/(2n+1)
考虑到 sina=sin(π-a)
所以 sin(n+1)π/(2n+1)*...*sin2nπ/(2n+1)=sin(π-(n+1)π/(2n+1))*sin(π-(n+3)π/(2n+1))*...*sin(π-2nπ/(2n+1))
=sinnπ/(2n+1)*sin(n-2)π/(2n+1)*...*sin(π/(2n+1))
因此sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sin(n-1)π/(2n+1)
*sin(n+1)π/(2n+1)*...*sin2nπ/(2n+1)
=sinπ/(2n+1)*sin2π/(2n+1)*sin3π/(2n+1)*...*sinnπ/(2n+1)
n为偶数时:
sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sin2nπ/(2n+1)
=sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sinnπ/(2n+1)
*sin(n+2)π/(2n+1)*...*sin2nπ/(2n+1)
考虑到 sina=sin(π-a)
所以 sin(n+2)π/(2n+1)*...*sin2nπ/(2n+1)=sin(π-(n+2)π/(2n+1))*sin(π-(n+4)π/(2n+1))*...*sin(π-2nπ/(2n+1))
=sin(n-1)π/(2n+1)*sin(n-3)π/(2n+1)*...*sin(π/(2n+1))
因此sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sinnπ/(2n+1)
*sin(n+3)π/(2n+1)*...*sin2nπ/(2n+1)
=sinπ/(2n+1)*sin2π/(2n+1)*sin3π/(2n+1)*...*sinnπ/(2n+1)
于是
sinπ/(2n+1)*sin2π/(2n+1)*sin3π/(2n+1)*...*sinnπ/(2n+1)
=sin2π/(2n+1)*sin4π/(2n+1)*sin6π/(2n+1)*...*sin2nπ/(2n+1)
因此
cosπ/(2n+1)*cos2π/(2n+1)*cos3π/(2n+1)*...*cosnπ/(2n+1)=1/(2^n),n是正整数
看了 高一数学证明题cosπ/(2...的网友还看了以下:
若m n为正整数 设M=2m+1 N=2n-1 (1)当m=n时 求证 M+N一定能被4整除 若M 2020-05-16 …
已知数列{an}(n≥0)满足a0=0,a1=1,对于所有正整数n,有an+1=2an+2007a 2020-05-17 …
数论题目(信息安全数学基础),thanksn是合数,p是n的素因数,证明:若p^a整除n,但p^( 2020-05-22 …
求教数学题一道如果n是一个大于6的整数,那下面哪一个一定能被3整除?A.N*(N+5)(N-6)B 2020-06-12 …
设an=1+1/2+1/3+.1/n,是否存在关于n的正式g(n),使得等式a1+a2+a3+.a 2020-06-12 …
n为非0自然数,试证n^13n定能被2730整除.2730=2*3*5*7*13,n^13-n=n 2020-07-22 …
我们把分数分子是1,分母是正整数的分数叫做分数单位.任何一个单位分数1/n=1/p+1/q(n,p 2020-07-30 …
若n为合数,n|x^2-1,则gcd(x+1,n)|ngcd(x-1,n)|n且gcd(x+1,n 2020-07-30 …
在f(m,n)中,.m.n.f(m,n)均为非负整数且对任意的m,n有f(0,n)=n+1,f(m 2020-07-31 …
数列是否存在常数abc使等式1(n^2-1^2)+2(n^2-2^2)+…+n(n^2-n^2)=a 2020-12-23 …