早教吧作业答案频道 -->数学-->
求n(n-1)(n-2).(n-k)的导数
题目详情
求n(n-1)(n-2).(n-k)的导数
▼优质解答
答案和解析
An=n!(1-1/1!+1/2!-1/3!+...+(-1)^n*1/n!)
一会儿回来提供三种证明思路
思路一:数学归纳法.这个没什么可说.
思路二:注意到An/A(n-1)大致是n,令 An=n!bn,代入,得
bn-b(n-1)=-(b(n-1)-b(n-2))/n,b1=0,b2=1/2.
所以,bn-b(n-1)=-(b(n-1)-b(n-2))/n=-(-(b(n-2)-b(n-3))/(n-1))/n=...=(-1)^(n-2)(b2-b1)/(n*(n-1)*...*3)=(-1)^n*1/n!,
所以 bn=1-1/1!+1/2!-1/3!+...+(-1)^n*1/n!,An=n!bn等于上式.
思路三:这个公式是错置排列的公式.所谓错置排列,有一个通俗的说法.n 个人,每人有一顶自己的帽子.An 是他们每个人都戴错帽子的戴法数目.显然 A1=0 (一个人不可能戴错),A2=1.对n>2的情况,第 n 个人的帽子必然戴到 某个第 i 人头上,i=1,2,...,n-1,这有两种情况 1)第i个人的帽子戴到第n个人头上,则其余 n-2 个人要互相戴错,共有 A(n-2)种戴法;
2)另外一个人的帽子戴到第n个人头上,此时共有 A(n-1)种戴法.总之,我们有 An=(n-1)(A(n-1)+A(n-2)),n>2.而我们可以用容斥原理算出错置排列的数目如上,所以必然有An等于上面的数.
一会儿回来提供三种证明思路
思路一:数学归纳法.这个没什么可说.
思路二:注意到An/A(n-1)大致是n,令 An=n!bn,代入,得
bn-b(n-1)=-(b(n-1)-b(n-2))/n,b1=0,b2=1/2.
所以,bn-b(n-1)=-(b(n-1)-b(n-2))/n=-(-(b(n-2)-b(n-3))/(n-1))/n=...=(-1)^(n-2)(b2-b1)/(n*(n-1)*...*3)=(-1)^n*1/n!,
所以 bn=1-1/1!+1/2!-1/3!+...+(-1)^n*1/n!,An=n!bn等于上式.
思路三:这个公式是错置排列的公式.所谓错置排列,有一个通俗的说法.n 个人,每人有一顶自己的帽子.An 是他们每个人都戴错帽子的戴法数目.显然 A1=0 (一个人不可能戴错),A2=1.对n>2的情况,第 n 个人的帽子必然戴到 某个第 i 人头上,i=1,2,...,n-1,这有两种情况 1)第i个人的帽子戴到第n个人头上,则其余 n-2 个人要互相戴错,共有 A(n-2)种戴法;
2)另外一个人的帽子戴到第n个人头上,此时共有 A(n-1)种戴法.总之,我们有 An=(n-1)(A(n-1)+A(n-2)),n>2.而我们可以用容斥原理算出错置排列的数目如上,所以必然有An等于上面的数.
看了 求n(n-1)(n-2).(...的网友还看了以下:
已知数列an是首项为1,公比为2的等比数列,数列bn的前n项和sn=n^2(1)求数列an与bn的 2020-05-13 …
在数列{an}中,a1=1,3ana(n-1)+an-a(n-1)=0(n≥2).(1)求证:数列 2020-05-14 …
求帮忙解一道高一数列题a(n)=3+(n-1)×2,b(n)=1/[(a(n))^2-1]求{b( 2020-06-02 …
请教一道数列题{An}首相为1,且8倍的第n+1项与第n项的乘积减去16倍的第n+1项再加上2倍的 2020-06-03 …
若n满足(n-2013)^2+(2014-n)^2=1,求(2014-n)(n-2013)的值.求 2020-06-28 …
已知数列an满足a1=1,an-2a下标(n-1)-2*(n-1)=0,(n∈N*,n≥2)(1) 2020-07-29 …
已知数列{an}中,a1=5,an=2a(n-1)+2^n-1(n∈N*且n≥2)(1)求a2,a 2020-07-29 …
关于数列的已知等比数列{an}的前n项和An=(1/3)^n-c(c为常数),数列{bn}(bn> 2020-07-30 …
若N满足(N-2000)^2+(2001-N)^2=1,求(2001-N)(N-2000)的值.若非 2020-12-07 …
已知数列{an}满足a1=3,an=3^[a(n-1)](n>=2).(1)求证:任意n∈N+,存在 2021-01-01 …