早教吧作业答案频道 -->数学-->
若函数f(x),gx)分别为R上的奇函数和偶函数,且满足f(x)-g(x)=e的x方,则g(0),f(2),f(3)的大小关系为?我根据图像猜的g(0)
题目详情
若函数f(x),gx)分别为R上的奇函数和偶函数,且满足f(x)-g(x)=e的x方,则g(0),f(2),f(3)的大小关系为?
我根据图像猜的g(0)
我根据图像猜的g(0)
▼优质解答
答案和解析
题中告诉了f(x)-g(x)
又有f(x),g(x)分别是R上的奇函数,偶函数.
f、g有不同的奇偶性,所以就会出现f(-x)-g(-x)=-f(x)-g(x)=-[f(x)+g(x)]
也就是说很容易构造出f(x)+g(x)
那么有了f(x)-g(x),f(x)+g(x),就可以求出f(x)、g(x)了
完整解答如下:
因为 f(x),g(x)分别是R上的奇函数,偶函数
所以,任取x属于R,都有:
f(-x)=-f(x) g(-x)=g(x) (1)
而 f(x)-g(x)=e^x (2)
用-x代替其中的x也是成立的,即:f(-x)-g(-x)=e^(-x)
用(1)式代入有 :f(x)+g(x)=-e^(-x) (3)
(1)+(3)有:2f(x)=e^x-e^(-x) 即:f(x)=1/2[e^x-1/(e^x)] ( 注意:e^(-x)=1/e^x)
(3)-(1)有:2g(x)=-1/(e^x)-e^x 即:g(x)=-1/2[1/(e^x)+e^x]
因而:x>0时,e^x>1>1/(e^x) f(x)>0 故f(3)>0 f(2)>0
而显然g(0)0时,u=e^x是增函数,1/(e^x)是减函数 故:-1/(e^x)是增函数
因而 f(x)=1/2[e^x-1/(e^x)] 是增函数.
有f(3)>f(2)
综上:g(0)
又有f(x),g(x)分别是R上的奇函数,偶函数.
f、g有不同的奇偶性,所以就会出现f(-x)-g(-x)=-f(x)-g(x)=-[f(x)+g(x)]
也就是说很容易构造出f(x)+g(x)
那么有了f(x)-g(x),f(x)+g(x),就可以求出f(x)、g(x)了
完整解答如下:
因为 f(x),g(x)分别是R上的奇函数,偶函数
所以,任取x属于R,都有:
f(-x)=-f(x) g(-x)=g(x) (1)
而 f(x)-g(x)=e^x (2)
用-x代替其中的x也是成立的,即:f(-x)-g(-x)=e^(-x)
用(1)式代入有 :f(x)+g(x)=-e^(-x) (3)
(1)+(3)有:2f(x)=e^x-e^(-x) 即:f(x)=1/2[e^x-1/(e^x)] ( 注意:e^(-x)=1/e^x)
(3)-(1)有:2g(x)=-1/(e^x)-e^x 即:g(x)=-1/2[1/(e^x)+e^x]
因而:x>0时,e^x>1>1/(e^x) f(x)>0 故f(3)>0 f(2)>0
而显然g(0)0时,u=e^x是增函数,1/(e^x)是减函数 故:-1/(e^x)是增函数
因而 f(x)=1/2[e^x-1/(e^x)] 是增函数.
有f(3)>f(2)
综上:g(0)
看了 若函数f(x),gx)分别为...的网友还看了以下:
已知定义在R上的f(x)为奇函数,有f(x-4)=-f(x),求周期因为-f(x)=f(-x)所以 2020-04-06 …
奇函数f(x)=ax³+bx²+cx的图像经过点A(-√2,√2),B(2√2,10√2).(1) 2020-05-16 …
为什么万有引力定律是F=mMG/r²,根据F正比于M/r²,F‘正比于m/r²,则F=k1M/r² 2020-05-22 …
已知函数fx是定义在r上的奇函数f(1)=0,xf'(x)-f(x)/x^2>0则f(x)>0的解 2020-06-08 …
f(x)=1/2arccosx/2求f(0),f(1),f(-根号2),f(根号3),f(-根号2 2020-06-13 …
如图,偶函数f(x)的图象如字母M,奇函数g(x)的图象如字母N,若方程f(f(x))=0,f(g 2020-06-22 …
求函数定义域F(x)=3根号4x+8/根号3x-2我知道分母分子都要求定义域,然后取交集.但是奇次 2020-07-30 …
多项式的根如果a是实系数多项式f(x)的复根,则a的共轭数[a]也是f(x)的根,因此奇数次实数系 2020-08-03 …
log判断奇偶f(x)=loga(x+根号下1+x^2)(a>0.a≠1)是?A.奇函数B.偶函数C 2020-11-01 …
数列分奇偶表示的通项公式如何合并成一个表达式是an=[f(奇)+f(偶)-(-1)^n[f(奇)-f 2020-11-28 …