早教吧作业答案频道 -->其他-->
对于函数f(x),若在定义域内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”.(Ⅰ)已知对于函数f(x),若在定义域内存在实数x,满足f(-x)=-f(x),则称f(x)为“局
题目详情
对于函数f(x),若在定义域内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”.(Ⅰ)已知
对于函数f(x),若在定义域内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”.
(Ⅰ)已知函数f(x)=ax2+2x-4a(a∈R,a≠0),试判断f(x)是否为“局部奇函数”?并说明理由;
(Ⅱ)若f(x)=4x-m?2x+1+m2-3为定义域R上的“局部奇函数”,求实数m的取值范围.
对于函数f(x),若在定义域内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”.
(Ⅰ)已知函数f(x)=ax2+2x-4a(a∈R,a≠0),试判断f(x)是否为“局部奇函数”?并说明理由;
(Ⅱ)若f(x)=4x-m?2x+1+m2-3为定义域R上的“局部奇函数”,求实数m的取值范围.
▼优质解答
答案和解析
(Ⅰ)若f(x)为“局部奇函数”等价于关于x的方程f(-x)+f(x)=0有解.
当f(x)=ax2+2x-4a时,
由f(-x)+f(x)=0得2a(x2-4)=0
解得x=±2,
所以方程f(-x)+f(x)=0有解,
因此f(x)为“局部奇函数”.
(Ⅱ)当f(x)=4x-m?2x+1+m2-3时,f(-x)+f(x)=0可化为4x+4-x-2m(2x+2-x)+2m2-6=0.
令t=2x+2-x,则t≥2,
则4x+4-x=t2-2,
从而t2-2mt+2m2-8=0在x≥2有解即可保证f(x)为“局部奇函数”.
令F(t)=t2-2mt+2m2-8,
1° 当F(2)≤0,t2-2mt+2m2-8=0在x≥2有解,
由F(2)≤0,即2m2-4m-4≤0,解得1-
≤m≤1+
,
2° 当F(2)>0时,t2-2mt+2m2-8=0在x≥2有解,等价于
,
解得1+
<m≤2
.
(说明:也可转化为t2-2mt+2m2-8=0的大根大于等于2求解)
综上,所求实数m的取值范围为1-
≤m≤2
.
当f(x)=ax2+2x-4a时,
由f(-x)+f(x)=0得2a(x2-4)=0
解得x=±2,
所以方程f(-x)+f(x)=0有解,
因此f(x)为“局部奇函数”.
(Ⅱ)当f(x)=4x-m?2x+1+m2-3时,f(-x)+f(x)=0可化为4x+4-x-2m(2x+2-x)+2m2-6=0.
令t=2x+2-x,则t≥2,
则4x+4-x=t2-2,
从而t2-2mt+2m2-8=0在x≥2有解即可保证f(x)为“局部奇函数”.
令F(t)=t2-2mt+2m2-8,
1° 当F(2)≤0,t2-2mt+2m2-8=0在x≥2有解,
由F(2)≤0,即2m2-4m-4≤0,解得1-
3 |
3 |
2° 当F(2)>0时,t2-2mt+2m2-8=0在x≥2有解,等价于
|
解得1+
3 |
2 |
(说明:也可转化为t2-2mt+2m2-8=0的大根大于等于2求解)
综上,所求实数m的取值范围为1-
3 |
2 |
看了 对于函数f(x),若在定义域...的网友还看了以下:
一道三角函数题!函数f(x)=Asin(wx+θ).(A>0,w>0)设f(xi)为函数f(x)的 2020-04-26 …
函数相加的定义域为何就是指的交集如函数f(x)的定义域是0,1,则函数g(x)=f(x+m)+f( 2020-07-30 …
定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f 2020-07-31 …
k为实数,f(x)=(x4+kx2+1)/(x4+x2+1),对任意三个实数a,b,c存在以f(a) 2020-11-12 …
例题:求函数f(X)=1/(x-1)的间断点,并指出其类型x=1为函数f(X)间断点,因为lim(x 2020-11-28 …
如果f(x)=x,则实数x称为函数f(x)的不动点已知函数f(x)=x^2+(2根号2+1)x+根号 2020-12-08 …
已知函数f(x),若在定义域内存在x0,使得f(-x0)=-f(x0)成立,则称x0为函数f(x)的 2020-12-17 …
定义:对于函数f(x),若存在非零常数M,T,使函数f(x)对于定义域内的任意实数x,都有f(x+T 2020-12-18 …
定义:对于函数f(x),若存在非零常数M,T,使函数f(x)对于定义域内的任意实数x,都有f(x+T 2020-12-18 …
已知函数y=f(x),若在定义域内存在x0,使得f(-x0)=-f(x0)成立,则称x0为函数f(x 2021-01-31 …