早教吧作业答案频道 -->数学-->
已知函数f(x)=(2的x次方-a)/(2的x次方+1)①当a=2时,证明f(x)不是奇函数②判断此函数的单调性,给出证明③若此函数为奇函数,且f(x)≥x平方-4x+m在x∈[-2,2]时恒成立,求实数m的取值
题目详情
已知函数f(x)=(2的x次方-a)/(2的x次方+1)
①当a=2时,证明f(x)不是奇函数 ②判断此函数的单调性,给出证明 ③若此函数为奇函数,且f(x)≥x平方-4x+m在x∈[-2,2]时恒成立,求实数m的取值范围
a>-1
①当a=2时,证明f(x)不是奇函数 ②判断此函数的单调性,给出证明 ③若此函数为奇函数,且f(x)≥x平方-4x+m在x∈[-2,2]时恒成立,求实数m的取值范围
a>-1
▼优质解答
答案和解析
1) a=2,f(x)+f(-x)=(2^x-2)/(2^x+1)+[2^(-x)-2]/[2^(-x)+1]
化简整理得大牌f(x)+f(-x)=-1不等于0,所以a=2时,f(x)不是奇函数
2)假设m>n,f(m)-f(n)=(2^m-a)/(2^m+1)+[2^n-a]/[2^n+1]
化简整理得f(m)-f(n)=(a+1)(2^m-2^n)/[(2^m+1)(2^n+1)]
因为a>-1,所以a+1>0,
m>n,所以(2^m-2^n)>0
而且[(2^m+1)(2^n+1)]>0
所以f(m)-f(n)>0,此函数为单调增函数
3)若此函数为奇函数,那么f(x)+f(-x)=0,
即(2^x-a)/(2^x+1)+[2^(-x)-a]/[2^(-x)+1]=0
简化整理得1-a=0,所以a=1
f(x)≥x^2-4x+m在[-2,2]恒成立,
即(2^x-1)/(2^x+1)≥x^2-4x+m
即(x^2-4x+m-1)(2^x+1)≤0
因为(2^x+1)恒大于0,所以要上面的不等式成立,那么(x^2-4x+m-1)≤0
即(x-2)^2+m-5≤0,即(5-m)≥(x-2)^2
因为x∈[-2,2],所以(x-2)^2最大值为4(x=0时)
所以5-m≥4
m≤1
化简整理得大牌f(x)+f(-x)=-1不等于0,所以a=2时,f(x)不是奇函数
2)假设m>n,f(m)-f(n)=(2^m-a)/(2^m+1)+[2^n-a]/[2^n+1]
化简整理得f(m)-f(n)=(a+1)(2^m-2^n)/[(2^m+1)(2^n+1)]
因为a>-1,所以a+1>0,
m>n,所以(2^m-2^n)>0
而且[(2^m+1)(2^n+1)]>0
所以f(m)-f(n)>0,此函数为单调增函数
3)若此函数为奇函数,那么f(x)+f(-x)=0,
即(2^x-a)/(2^x+1)+[2^(-x)-a]/[2^(-x)+1]=0
简化整理得1-a=0,所以a=1
f(x)≥x^2-4x+m在[-2,2]恒成立,
即(2^x-1)/(2^x+1)≥x^2-4x+m
即(x^2-4x+m-1)(2^x+1)≤0
因为(2^x+1)恒大于0,所以要上面的不等式成立,那么(x^2-4x+m-1)≤0
即(x-2)^2+m-5≤0,即(5-m)≥(x-2)^2
因为x∈[-2,2],所以(x-2)^2最大值为4(x=0时)
所以5-m≥4
m≤1
看了 已知函数f(x)=(2的x次...的网友还看了以下:
已知关于x的方程mx2+(3m+1)x+3=0.(1)求证:不论m为任何实数,此方程总有实数根;( 2020-05-16 …
患者,男性,60岁。眩晕,耳鸣如蝉,失眠健忘,盗汗胁痛,腰膝酸痛,舌红少苔,脉细数。此证候是属( ) 2020-05-17 …
已知函数f(x)=(m-2)x+2m-3(1)求证:无论m取何实数值,此函数图像恒过一定点;(2) 2020-06-06 …
已知函数f(x)=(m-2)x+2m-3.(1)求证:无论m取何实数,此函数图象恒过某一定点,并求 2020-06-08 …
人人学习,终身学习,将其当作一种习惯,一种需要,当作生活的一个组成部分。无数实践证明,不学习无以立 2020-06-10 …
离散数学---证明:所有有理数是实数,某些有理数是整数,因此某些实数是整数 2020-06-14 …
证明题:所有有理数是实数,某些有理数是整数,因此某些实数是整数. 2020-07-30 …
已知关于x的一元二次方程2x2+(a+4)x+a=0.(1)求证:无论a为任何实数,此方程总有两个 2020-08-03 …
2013娄底中考数学24题帮个忙已知:一元二次方程:二分之一X平方+kx+k-二分之一=0(1)求证 2020-12-17 …
如图是实验室制SO2并验证SO2某些性质的装置图.试回答:(1)①中的实验现象是,此实验证明SO2是 2021-02-01 …