早教吧作业答案频道 -->数学-->
已知函数f(x)=(2的x次方-a)/(2的x次方+1)①当a=2时,证明f(x)不是奇函数②判断此函数的单调性,给出证明③若此函数为奇函数,且f(x)≥x平方-4x+m在x∈[-2,2]时恒成立,求实数m的取值
题目详情
已知函数f(x)=(2的x次方-a)/(2的x次方+1)
①当a=2时,证明f(x)不是奇函数 ②判断此函数的单调性,给出证明 ③若此函数为奇函数,且f(x)≥x平方-4x+m在x∈[-2,2]时恒成立,求实数m的取值范围
a>-1
①当a=2时,证明f(x)不是奇函数 ②判断此函数的单调性,给出证明 ③若此函数为奇函数,且f(x)≥x平方-4x+m在x∈[-2,2]时恒成立,求实数m的取值范围
a>-1
▼优质解答
答案和解析
1) a=2,f(x)+f(-x)=(2^x-2)/(2^x+1)+[2^(-x)-2]/[2^(-x)+1]
化简整理得大牌f(x)+f(-x)=-1不等于0,所以a=2时,f(x)不是奇函数
2)假设m>n,f(m)-f(n)=(2^m-a)/(2^m+1)+[2^n-a]/[2^n+1]
化简整理得f(m)-f(n)=(a+1)(2^m-2^n)/[(2^m+1)(2^n+1)]
因为a>-1,所以a+1>0,
m>n,所以(2^m-2^n)>0
而且[(2^m+1)(2^n+1)]>0
所以f(m)-f(n)>0,此函数为单调增函数
3)若此函数为奇函数,那么f(x)+f(-x)=0,
即(2^x-a)/(2^x+1)+[2^(-x)-a]/[2^(-x)+1]=0
简化整理得1-a=0,所以a=1
f(x)≥x^2-4x+m在[-2,2]恒成立,
即(2^x-1)/(2^x+1)≥x^2-4x+m
即(x^2-4x+m-1)(2^x+1)≤0
因为(2^x+1)恒大于0,所以要上面的不等式成立,那么(x^2-4x+m-1)≤0
即(x-2)^2+m-5≤0,即(5-m)≥(x-2)^2
因为x∈[-2,2],所以(x-2)^2最大值为4(x=0时)
所以5-m≥4
m≤1
化简整理得大牌f(x)+f(-x)=-1不等于0,所以a=2时,f(x)不是奇函数
2)假设m>n,f(m)-f(n)=(2^m-a)/(2^m+1)+[2^n-a]/[2^n+1]
化简整理得f(m)-f(n)=(a+1)(2^m-2^n)/[(2^m+1)(2^n+1)]
因为a>-1,所以a+1>0,
m>n,所以(2^m-2^n)>0
而且[(2^m+1)(2^n+1)]>0
所以f(m)-f(n)>0,此函数为单调增函数
3)若此函数为奇函数,那么f(x)+f(-x)=0,
即(2^x-a)/(2^x+1)+[2^(-x)-a]/[2^(-x)+1]=0
简化整理得1-a=0,所以a=1
f(x)≥x^2-4x+m在[-2,2]恒成立,
即(2^x-1)/(2^x+1)≥x^2-4x+m
即(x^2-4x+m-1)(2^x+1)≤0
因为(2^x+1)恒大于0,所以要上面的不等式成立,那么(x^2-4x+m-1)≤0
即(x-2)^2+m-5≤0,即(5-m)≥(x-2)^2
因为x∈[-2,2],所以(x-2)^2最大值为4(x=0时)
所以5-m≥4
m≤1
看了 已知函数f(x)=(2的x次...的网友还看了以下:
对m∈(0,5】,不等式x^2+(2m-1)x>4x+2m-4 恒成立 我看到的答案是x<-6或x 2020-05-16 …
已知奇函数y=f(x)是R上的减函数,对任意x∈R恒有f(kx)已知奇函数y=f(x)是R上的减函 2020-05-22 …
已知函数f(x),且当f(x)不等于0时恒有f(-x)/f(x)=1成立,则f(x)必为1.奇函数 2020-06-03 …
求几道高一的数学题的解答1.求y=2x-2分之x^2-2x+2(x>1)的最小值2.f(x)且定义 2020-06-03 …
设函数f(x)的定义域为D,如果存在正实数k,使对任意x∈D,都有x+k∈D,且f(x+k)>f( 2020-06-08 …
(2014•崇明县一模)已知函数f(x)=2x+b,g(x)=x2+bx+c(b,c∈R),对任意 2020-06-12 …
已知函数f(x)=(2^x+a)/(2^x+b)是定义在R上的奇函数1,求实数a,b的值;2,判断 2020-07-27 …
1.已知二次函数y=f(x)同时满足三个条件:(1)f(1-x)对x∈R恒成立(2)当x∈R时,y 2020-08-01 …
极限定义书上是对于任意ε>0,存在X>0,当|x|>X,恒有|f(x)-A|<ε因为X=X(极限定义 2020-12-01 …
已知函数f(x),当x,y∈R时恒有f(x+y)=f(x)+f(y)(1)求f(0),并判断f(x) 2020-12-22 …