早教吧作业答案频道 -->数学-->
设函数f(x)=e^(x-1)+a/x(1)若函数f(x)在x=1处有极值且g(x)=f(x)+b在(0,+oo)上有零点求b的最大值(2)若f(x)在[1,2]上的为单调函数,求实数a的取值范围(3)在(1)的条件下数列{an}中a1=1an+1=f(an)-f'(an)求|a
题目详情
设函数f(x)=e^(x-1) +a/x
(1)若函数f(x)在x=1处有极值 且g(x)=f(x)+b在(0,+oo)上有零点 求b的最大值 (2)若f(x)在[1,2]上的为单调函数,求实数a的取值范围 (3)在(1)的条件下 数列{an}中a1=1 an+1=f(an)-f'(an) 求|an+1-an|的最小值
(1)若函数f(x)在x=1处有极值 且g(x)=f(x)+b在(0,+oo)上有零点 求b的最大值 (2)若f(x)在[1,2]上的为单调函数,求实数a的取值范围 (3)在(1)的条件下 数列{an}中a1=1 an+1=f(an)-f'(an) 求|an+1-an|的最小值
▼优质解答
答案和解析
(1)f'(x)=e^(x-1)-a/x^2,由于f在x=1处有极值
所以f'(1)=0,即e^(1-1)-a/1^2=0即a=1
所以f(x)=e^(x-1)+1/x
那么f(x)+b有零点也就是f(x)+b=0有解,即求b= - f(x)的最大值
又f'(x)=e^(x-1)-1/x^2=【(x^2) [e^(x-1)]-1】/x^2在(0,1)上恒负,在(1,+00)上恒正
所以f(x)在(0,1)上单调递减,在(1,+00)上单调递增,所以
f(x)的最小值是f(1)=2
所以b= - f(x)的最大值是 -2
(2)f(x)在【1,2】上单调,也就是f'(x)在(1,2)上恒正或者恒负
f'(x)=e^(x-1)-a/x^2,a=0,即e^(1-1)-a/1^2>=0,a
所以f'(1)=0,即e^(1-1)-a/1^2=0即a=1
所以f(x)=e^(x-1)+1/x
那么f(x)+b有零点也就是f(x)+b=0有解,即求b= - f(x)的最大值
又f'(x)=e^(x-1)-1/x^2=【(x^2) [e^(x-1)]-1】/x^2在(0,1)上恒负,在(1,+00)上恒正
所以f(x)在(0,1)上单调递减,在(1,+00)上单调递增,所以
f(x)的最小值是f(1)=2
所以b= - f(x)的最大值是 -2
(2)f(x)在【1,2】上单调,也就是f'(x)在(1,2)上恒正或者恒负
f'(x)=e^(x-1)-a/x^2,a=0,即e^(1-1)-a/1^2>=0,a
看了 设函数f(x)=e^(x-1...的网友还看了以下:
已知向量a=(2,1),b=(x,y).(1)若x∈{-1,0,1,2},y∈{-1,0,1},求向 2020-03-30 …
若|x|<1成立时,[x-(a-1)]•[x-(a4)]<0也成立,则a属于若|x|<1成立时,[ 2020-04-27 …
1.若x的1/2次方+x的-1/2次方=3求(x的3/2次方+x的-3/2次方-3)/(x的2次方 2020-05-04 …
用符号(x]表示小于x的最大整数,如(π]=3,(-1.2]=-2.有下列命题:①若函数f(x)= 2020-05-13 …
命题“若x>1,则x>0”的否命题是()A.若x≤1,则x≤0B.若x≤1,则x>0C.若x>1, 2020-05-21 …
若(x^2+1)(x-3)^9=a0+a1(x-2)+a2(x-2)^2+a3(x-2)^3……+ 2020-06-03 …
已知二次函数y=f(x)的定义域为R,f(1)=2,且在x=m时取得最值,若y=g(x)为一次函数 2020-06-06 …
填空:分式的约分和通分约分:-16b^2y^2/20ay^3=-1-x/x^2+2x+1=a^y- 2020-06-06 …
1,若x+1/x=3,则(x³+1/x³+7)/(x的4次方+1/x的4次方+3)2,若x²-13 2020-06-15 …
若x∈空集,那么是否可以推出x>1?若x∈(1,2),可以推出x∈(0,3),因为(1,2)∈(0 2020-06-23 …