早教吧作业答案频道 -->数学-->
设函数f(x)=e^(x-1)+a/x(1)若函数f(x)在x=1处有极值且g(x)=f(x)+b在(0,+oo)上有零点求b的最大值(2)若f(x)在[1,2]上的为单调函数,求实数a的取值范围(3)在(1)的条件下数列{an}中a1=1an+1=f(an)-f'(an)求|a
题目详情
设函数f(x)=e^(x-1) +a/x
(1)若函数f(x)在x=1处有极值 且g(x)=f(x)+b在(0,+oo)上有零点 求b的最大值 (2)若f(x)在[1,2]上的为单调函数,求实数a的取值范围 (3)在(1)的条件下 数列{an}中a1=1 an+1=f(an)-f'(an) 求|an+1-an|的最小值
(1)若函数f(x)在x=1处有极值 且g(x)=f(x)+b在(0,+oo)上有零点 求b的最大值 (2)若f(x)在[1,2]上的为单调函数,求实数a的取值范围 (3)在(1)的条件下 数列{an}中a1=1 an+1=f(an)-f'(an) 求|an+1-an|的最小值
▼优质解答
答案和解析
(1)f'(x)=e^(x-1)-a/x^2,由于f在x=1处有极值
所以f'(1)=0,即e^(1-1)-a/1^2=0即a=1
所以f(x)=e^(x-1)+1/x
那么f(x)+b有零点也就是f(x)+b=0有解,即求b= - f(x)的最大值
又f'(x)=e^(x-1)-1/x^2=【(x^2) [e^(x-1)]-1】/x^2在(0,1)上恒负,在(1,+00)上恒正
所以f(x)在(0,1)上单调递减,在(1,+00)上单调递增,所以
f(x)的最小值是f(1)=2
所以b= - f(x)的最大值是 -2
(2)f(x)在【1,2】上单调,也就是f'(x)在(1,2)上恒正或者恒负
f'(x)=e^(x-1)-a/x^2,a=0,即e^(1-1)-a/1^2>=0,a
所以f'(1)=0,即e^(1-1)-a/1^2=0即a=1
所以f(x)=e^(x-1)+1/x
那么f(x)+b有零点也就是f(x)+b=0有解,即求b= - f(x)的最大值
又f'(x)=e^(x-1)-1/x^2=【(x^2) [e^(x-1)]-1】/x^2在(0,1)上恒负,在(1,+00)上恒正
所以f(x)在(0,1)上单调递减,在(1,+00)上单调递增,所以
f(x)的最小值是f(1)=2
所以b= - f(x)的最大值是 -2
(2)f(x)在【1,2】上单调,也就是f'(x)在(1,2)上恒正或者恒负
f'(x)=e^(x-1)-a/x^2,a=0,即e^(1-1)-a/1^2>=0,a
看了 设函数f(x)=e^(x-1...的网友还看了以下:
f(x)=a^2+2ax,F(X)>=0,X属于[-1,1]求a的取值范围这题目我是会做,就是有个 2020-04-27 …
f(x)=ax2+bx+c 若a=1,c=0.且|f(x)|≤1在区间(0,1]上恒成立.求b的取 2020-05-14 …
f(x)=x^3+ax^2-a^2x+m(a>0)若对任意的a∈[3,6],不等式f(x)≤1在X 2020-05-16 …
解cosA-1/(2COSA),cosA属于[1/2,1]的取值范围令t=cosA,则f(t)=t 2020-05-17 …
1.f(x)的定义域为-1,1则f(2x-1)的定义域为?说说我对这题的疑惑:为何f(2x-1)的 2020-06-04 …
下面这些句子是刻画胡屠户动作的,这些句子如何准确生动的刻画人物特征的.1.范进因没有盘费,走去同丈 2020-06-08 …
已知函数f(x+1)的定义域为[-2,3].求函数f(2x-1)的定义域y=f(x+1)的定义域指 2020-06-25 …
复矩阵的1-范数怎么求啊.也就是如3x3{1,2+i,2;-1,1+i,i;-3i,3,-2}求结 2020-06-30 …
已知函数f(x)=1/3x3-a2x+1/2a(a∈R)(Ⅱ)若对任意x∈(0,+∞),有f(x) 2020-07-07 …
高一对数函数1.y=a的x次方+b发图象过点(1,4),其反函数过点(2,0),则a=,b=2.f 2020-07-08 …