早教吧作业答案频道 -->数学-->
设函数f(x)=e^(x-1)+a/x(1)若函数f(x)在x=1处有极值且g(x)=f(x)+b在(0,+oo)上有零点求b的最大值(2)若f(x)在[1,2]上的为单调函数,求实数a的取值范围(3)在(1)的条件下数列{an}中a1=1an+1=f(an)-f'(an)求|a
题目详情
设函数f(x)=e^(x-1) +a/x
(1)若函数f(x)在x=1处有极值 且g(x)=f(x)+b在(0,+oo)上有零点 求b的最大值 (2)若f(x)在[1,2]上的为单调函数,求实数a的取值范围 (3)在(1)的条件下 数列{an}中a1=1 an+1=f(an)-f'(an) 求|an+1-an|的最小值
(1)若函数f(x)在x=1处有极值 且g(x)=f(x)+b在(0,+oo)上有零点 求b的最大值 (2)若f(x)在[1,2]上的为单调函数,求实数a的取值范围 (3)在(1)的条件下 数列{an}中a1=1 an+1=f(an)-f'(an) 求|an+1-an|的最小值
▼优质解答
答案和解析
(1)f'(x)=e^(x-1)-a/x^2,由于f在x=1处有极值
所以f'(1)=0,即e^(1-1)-a/1^2=0即a=1
所以f(x)=e^(x-1)+1/x
那么f(x)+b有零点也就是f(x)+b=0有解,即求b= - f(x)的最大值
又f'(x)=e^(x-1)-1/x^2=【(x^2) [e^(x-1)]-1】/x^2在(0,1)上恒负,在(1,+00)上恒正
所以f(x)在(0,1)上单调递减,在(1,+00)上单调递增,所以
f(x)的最小值是f(1)=2
所以b= - f(x)的最大值是 -2
(2)f(x)在【1,2】上单调,也就是f'(x)在(1,2)上恒正或者恒负
f'(x)=e^(x-1)-a/x^2,a=0,即e^(1-1)-a/1^2>=0,a
所以f'(1)=0,即e^(1-1)-a/1^2=0即a=1
所以f(x)=e^(x-1)+1/x
那么f(x)+b有零点也就是f(x)+b=0有解,即求b= - f(x)的最大值
又f'(x)=e^(x-1)-1/x^2=【(x^2) [e^(x-1)]-1】/x^2在(0,1)上恒负,在(1,+00)上恒正
所以f(x)在(0,1)上单调递减,在(1,+00)上单调递增,所以
f(x)的最小值是f(1)=2
所以b= - f(x)的最大值是 -2
(2)f(x)在【1,2】上单调,也就是f'(x)在(1,2)上恒正或者恒负
f'(x)=e^(x-1)-a/x^2,a=0,即e^(1-1)-a/1^2>=0,a
看了 设函数f(x)=e^(x-1...的网友还看了以下:
已知点A(3,4),B(-2.m)在反比例函数上.已知点A(3,4),B(-2.m)在反比例函数的 2020-04-08 …
已知定义域为R的函数f(X)=-2的X次方(指数函数)+a除以2的X次方+1为奇函数.1,求a的值 2020-05-02 …
已知函数f(x)=1/2cosx/2+根号三/2sinx/2,则f(x)是区间具体选项A(2/3π 2020-05-16 …
f(x)在D上单调递减或单调递增存在区间[a,b]上的值域是[a,b](1)求闭函数f(x)=x^ 2020-06-23 …
1)已知奇函数f(x)在a,b上是减函数,试问:它在-b,-a上是增函数还是减函数?2)已知偶函数 2020-07-13 …
证明原函数和反函数单调性相同已知y=f(x)在[a,b]上是增函数,求证y=f-1(x)在[f(a 2020-08-01 …
1设函数f(x)为奇函数,且在(0,+∞)上是减函数,试证函数f(x)在(-∞,0)上是减函数2设 2020-08-01 …
问三道题:1,点A(25分之4,b)在函数y=5x-根号(5-x)上,则b=?2,下例哪些点在函数y 2020-11-28 …
(1)已知奇函数f(x)在[a,b]上是减函数,试问:它在[-b,-a]上是增函数还是减函数,并证明 2020-12-08 …
定义函数取值范围[a,b]如果值域在[a,b]则称函数在[a,b]上是保值函数f(x)=x^2在[0 2020-12-31 …