早教吧作业答案频道 -->其他-->
已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A、B两点,线段AB的中点为M,O为坐标原点.(Ⅰ)求M的轨迹方程;(Ⅱ)当|OP|=|OM|时,求l的方程及△POM的面积.
题目详情
已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A、B两点,线段AB的中点为M,O为坐标原点.
(Ⅰ)求M的轨迹方程;
(Ⅱ)当|OP|=|OM|时,求l的方程及△POM的面积.
(Ⅰ)求M的轨迹方程;
(Ⅱ)当|OP|=|OM|时,求l的方程及△POM的面积.
▼优质解答
答案和解析
(I)圆C的方程可化为x2+(y-4)2=16,
所以圆心为C(0,4),半径为4,
设M(x,y),则
=(x,y−4),
=(2−x,2−y),
由题设知
•
=0,
故x(2-x)+(y-4)(2-y)=0,
即(x-1)2+(y-3)2=2.
由于点P在圆C的内部,
所以M的轨迹方程是(x-1)2+(y-3)2=2.…(6分)
(II)由(1)可知M的轨迹是以点N(1,3)为圆心,
为半径的圆.
由于|OP|=|OM|,故O在线段PM的垂直平分线上,
又P在圆N上,从而ON⊥PM.
因为ON的斜率为3,
所以l的斜率为−
,
故l的方程为y=−
x+
.
又|OP|=|OM|=2
,O到l的距离为
,|PM|=
所以圆心为C(0,4),半径为4,
设M(x,y),则
CM |
MP |
由题设知
CM |
MP |
故x(2-x)+(y-4)(2-y)=0,
即(x-1)2+(y-3)2=2.
由于点P在圆C的内部,
所以M的轨迹方程是(x-1)2+(y-3)2=2.…(6分)
(II)由(1)可知M的轨迹是以点N(1,3)为圆心,
2 |
由于|OP|=|OM|,故O在线段PM的垂直平分线上,
又P在圆N上,从而ON⊥PM.
因为ON的斜率为3,
所以l的斜率为−
1 |
3 |
故l的方程为y=−
1 |
3 |
8 |
3 |
又|OP|=|OM|=2
2 |
4
| ||
5 |
4 |
看了 已知点P(2,2),圆C:x...的网友还看了以下:
设M,N,P是△ABC边上的点,且BM=1/3BC,CN=1/3CA,AP=1/3AB,若A→B= 2020-04-27 …
已知M={m,n,p,q},其中m,n为关于x的方程x^2-ax+b=0的两个根,p,q为关于y的 2020-05-13 …
设M是△ABC内一点,∠BAC=30°,定义f(M)=(m,n,p),其中m,n,p分别为△MBC 2020-05-14 …
设M是三角形ABC内一点,P为BC中点,且向量AP的平方减去(向量BC的平方/4)=2√3,角BA 2020-05-14 …
设M是△ABC内一点,且·=2,∠BAC=30°,定义f(M)=(m,n,p),其中m、n、p分别 2020-05-14 …
设直线l1:y=2x与直线l2:x+y=3交于P点.(1)当直线m过P点,且与直线l0:x-2y= 2020-07-30 …
对于非空集合M、P,把所有属于M而不属于P的元素组合的集合称为M与P的差集,记做M-p用数学符号描 2020-07-30 …
一元二次方程各种难,因式分解,关键是三角形的面积不用乘以二分之一么?已知X1,X2是关于X的方程( 2020-08-02 …
几何分布无记忆性证明中证:P{x=m+n|x>m}=P(X=m+n,x>m)/P{x>m}=P(X= 2020-10-31 …
下列各选项中的M与P表示同一个集合的是()A.M={x∈R|x2+0.01=0},P={x|x2=0 2020-10-31 …