早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知定义在R上的偶函数f(x)=a•3x+3-x,a为常数,(1)求a的值;(2)用单调性定义证明f(x)在[0,+∞)上是增函数;(3)若关于x的方程f(b)=f(|2x-1|)(b为常数)在R上有且只有一个实

题目详情
已知定义在R上的偶函数f(x)=a•3x+3-x,a为常数,
(1)求a的值;
(2)用单调性定义证明f(x)在[0,+∞)上是增函数;
(3)若关于x的方程f(b)=f(|2x-1|)(b为常数)在R上有且只有一个实根,求实数b的取值范围.
▼优质解答
答案和解析
(1)由f(-x)=f(x)得a•3-x+3x=a•3x+3-x
所以(a-1)(3x-3-x)=0对x∈R恒成立,
所以a=1;
(2)证明:由(1)得f(x)=3x+3-x
任取m,n∈[0,+∞),且m<n,
则f(m)-f(n)=3m+3-m-3n-3-n=
(3m−3n)(3m+n−1)
3m+n

由0≤m<n,得3m-3n<0,3m+n>0,3m+n-1>0
则f(m)-f(n)<0即有f(m)<f(n),
所以f(x)在(0,+∞)上是单调递增函数;          
(3)因为偶函数f(x)在[0,+∞)上是单调递增函数,又f(b)=f(|2x-1|),
①当b≥0时,得b=|2x-1|在R上有且只有一个实根,
所以函数y=b与y=|2x-1|的图象有且只有一个交点,
由图象得b≥1或b=0;
②当b<0时,得-b=|2x-1|在R上有且只有一个实根,
所以函数y=-b与y=|2x-1|的图象有且只有一个交点,由图象得b≤-1
综上所述:b≤-1或b=0或b≥1.