早教吧作业答案频道 -->数学-->
已知函数f(x)=x^2+mx+n的图像过点(1,3),且f(-1+x)=(-1-x)对任意实数都成立,函数y=g(x)与f(X)的图像关于原点对称.f(-1+x)=f(-1-X),f(1)=3(1)求f(x)与g(x)的解析式(2)若f(X)=g(x)-mf(x)在[-1,1]上是增函数,求实数m
题目详情
已知函数f(x)=x^2+mx+n的图像过点(1,3),且f(-1+x)=(-1-x)对任意实数都成立,函数y=g(x)与f(X)的图像关于原点对称.f(-1+x)=f(-1-X),f(1)=3
(1)求f(x)与g(x)的解析式
(2)若f(X)=g(x)-mf(x)在[-1,1]上是增函数,求实数m的取值范围
(1)求f(x)与g(x)的解析式
(2)若f(X)=g(x)-mf(x)在[-1,1]上是增函数,求实数m的取值范围
▼优质解答
答案和解析
(1)、
因为
f(x-1) = f(-1-x),把这个等式代到f(x)中可以很容易求出
m = 2.
又函数f(x)过(1,3),所以代进f(x)中得:
m + n = 2,
从而
n = 0
故
f(x) = x^2 + 2x.
又g(x)关于f(x)原点对称,所以,根据奇函数的定义:
g(x) = -f(-x) = - x^2 + 2x.
(2)、
F(x) = g(x) - mf(x) = -(m + 1)x^2 - 2(m - 1)x.
F(x)的对称轴是:
x = (1 - m)/(1 + m).
为了让F(x)在〔-1,1〕上为增函数,根据二次函数的定义,必须讨论开口方向来确定,所以有三种情况:
a、m = -1 ,F(x)在[-1,1]为增函数,所以m = -1成立.
b、开口向上,对称轴小于-1,即:
-(m + 1)>0 and (1 - m)/(1 + m)
(1)、
因为
f(x-1) = f(-1-x),把这个等式代到f(x)中可以很容易求出
m = 2.
又函数f(x)过(1,3),所以代进f(x)中得:
m + n = 2,
从而
n = 0
故
f(x) = x^2 + 2x.
又g(x)关于f(x)原点对称,所以,根据奇函数的定义:
g(x) = -f(-x) = - x^2 + 2x.
(2)、
F(x) = g(x) - mf(x) = -(m + 1)x^2 - 2(m - 1)x.
F(x)的对称轴是:
x = (1 - m)/(1 + m).
为了让F(x)在〔-1,1〕上为增函数,根据二次函数的定义,必须讨论开口方向来确定,所以有三种情况:
a、m = -1 ,F(x)在[-1,1]为增函数,所以m = -1成立.
b、开口向上,对称轴小于-1,即:
-(m + 1)>0 and (1 - m)/(1 + m)
看了 已知函数f(x)=x^2+m...的网友还看了以下:
一次函数和反比列函数已知反比列函数y=12/x的图象和一次函数y=kx-7的图象都经过点P(m,2) 2020-03-30 …
如图是反比例函数y=m-2/x的图像的一只,根据图像回答下列问题1,图像的另一只在哪哪个象限?2, 2020-04-08 …
(1)幂函数y=x^-2/3的定义域?(2)若函数y=f(x)的反函数图象过点(1,5),则函数y 2020-05-13 …
定义域为R的函数y=x^(2/2)与函数y=√(x^2)的图象是否相同?定义域都为R,函数y=x^ 2020-05-13 …
关于二次函数的几个题目已知二次函数图像的顶点是(-1,2),且过点(0,3/2),求证:对于任意实 2020-05-13 …
已知一次函数的图象与反比例函数的图象相交于A、B两点,其中A点的横坐标与B点的纵坐标都是2,如图: 2020-07-01 …
初二一次函数的图象习题,前三题都是填空题1.对于函数y=2x+7,当x①≤x≤x②时,(2x①+7 2020-07-20 …
证明一函数图像在区间内恒在另一图像上方的问题,已知函数f(x)=ax^2+bx+1若a=1,当x∈ 2020-08-01 …
1,一次函数y=kx+b的图象都是一条,两点法画直线通常取点(,0)和(0,1、一次函数y=kx+ 2020-08-01 …
数学函数几道简答题(1)将F(x)=2^x写成一个奇函数和一个偶函数的和(2)设f(x)是定义在R 2020-08-01 …