早教吧作业答案频道 -->数学-->
如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么样的特殊四边形?请说明理由.
题目详情
如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点. (1)求证:△MBA≌△NDC; (2)四边形MPNQ是什么样的特殊四边形?请说明理由. ![]() |
(1)求证:△MBA≌△NDC;
(2)四边形MPNQ是什么样的特殊四边形?请说明理由.

(1)求证:△MBA≌△NDC;
(2)四边形MPNQ是什么样的特殊四边形?请说明理由.

(1)求证:△MBA≌△NDC;
(2)四边形MPNQ是什么样的特殊四边形?请说明理由.

(1)求证:△MBA≌△NDC;
(2)四边形MPNQ是什么样的特殊四边形?请说明理由.


▼优质解答
答案和解析
证明:(1)∵四边形ABCD是矩形,
∴AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD、BC的中点,
∴AM=
AD,CN=
BC,
∴AM=CN,
在△MAB和△NDC中,
∵
,
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形. 证明:(1)∵四边形ABCD是矩形,
∴AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD、BC的中点,
∴AM=
AD,CN=
BC,
∴AM=CN,
在△MAB和△NDC中,
∵
,
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形. 证明:(1)∵四边形ABCD是矩形,
∴AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD、BC的中点,
∴AM=
AD,CN=
BC,
∴AM=CN,
在△MAB和△NDC中,
∵
,
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形. 证明:(1)∵四边形ABCD是矩形,
∴AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD、BC的中点,
∴AM=
AD,CN=
BC,
∴AM=CN,
在△MAB和△NDC中,
∵
,
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 2 1 1 1 2 2 2 AD,CN=
BC,
∴AM=CN,
在△MAB和△NDC中,
∵
,
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 2 1 1 1 2 2 2 BC,
∴AM=CN,
在△MAB和△NDC中,
∵
,
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
AB=CD ∠A=∠C=90° AM=CN AB=CD AB=CD AB=CD ∠A=∠C=90° ∠A=∠C=90° ∠A=∠C=90° AM=CN AM=CN AM=CN ,
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,
则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
DM=BN DQ=BP ∠MDQ=∠NBP DM=BN DM=BN DM=BN DQ=BP DQ=BP DQ=BP ∠MDQ=∠NBP ∠MDQ=∠NBP ∠MDQ=∠NBP ,
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 2 1 1 1 2 2 2 AN,
∴MQ=
BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 2 1 1 1 2 2 2 BM,
∵MP=
BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 2 1 1 1 2 2 2 BM,
∴MP=MQ,
∴平行四边形MQNP是菱形.
证明:(1)∵四边形ABCD是矩形, ∴AB=CD,AD=BC,∠A=∠C=90°, ∵在矩形ABCD中,M、N分别是AD、BC的中点, ∴AM=
∴AM=CN, 在△MAB和△NDC中, ∵
∴△MBA≌△NDC(SAS); (2)四边形MPNQ是菱形. 理由如下:连接AP,MN, ![]() 则四边形ABNM是矩形, ∵AN和BM互相平分, 则A,P,N在同一条直线上, 易证:△ABN≌△BAM, ∴AN=BM, ∵△MAB≌△NDC, ∴BM=DN, ∵P、Q分别是BM、DN的中点, ∴PM=NQ, ∵
∴△MQD≌△NPB(SAS). ∴四边形MPNQ是平行四边形, ∵M是AD中点,Q是DN中点, ∴MQ=
∴MQ=
∵MP=
∴MP=MQ, ∴平行四边形MQNP是菱形. |
∴AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD、BC的中点,
∴AM=
1 |
2 |
1 |
2 |
∴AM=CN,
在△MAB和△NDC中,
∵
|
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,

则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
|
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
∴AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD、BC的中点,
∴AM=
1 |
2 |
1 |
2 |
∴AM=CN,
在△MAB和△NDC中,
∵
|
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,

则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
|
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
∴AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD、BC的中点,
∴AM=
1 |
2 |
1 |
2 |
∴AM=CN,
在△MAB和△NDC中,
∵
|
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,

则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
|
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
∴AB=CD,AD=BC,∠A=∠C=90°,
∵在矩形ABCD中,M、N分别是AD、BC的中点,
∴AM=
1 |
2 |
1 |
2 |
∴AM=CN,
在△MAB和△NDC中,
∵
|
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,

则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
|
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 |
2 |
1 |
2 |
∴AM=CN,
在△MAB和△NDC中,
∵
|
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,

则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
|
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 |
2 |
∴AM=CN,
在△MAB和△NDC中,
∵
|
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,

则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
|
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
|
AB=CD |
∠A=∠C=90° |
AM=CN |
AB=CD |
∠A=∠C=90° |
AM=CN |
AB=CD |
∠A=∠C=90° |
AM=CN |
AB=CD |
∠A=∠C=90° |
AM=CN |
∴△MBA≌△NDC(SAS);
(2)四边形MPNQ是菱形.
理由如下:连接AP,MN,

则四边形ABNM是矩形,
∵AN和BM互相平分,
则A,P,N在同一条直线上,
易证:△ABN≌△BAM,
∴AN=BM,
∵△MAB≌△NDC,
∴BM=DN,
∵P、Q分别是BM、DN的中点,
∴PM=NQ,
∵
|
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
|
DM=BN |
DQ=BP |
∠MDQ=∠NBP |
DM=BN |
DQ=BP |
∠MDQ=∠NBP |
DM=BN |
DQ=BP |
∠MDQ=∠NBP |
DM=BN |
DQ=BP |
∠MDQ=∠NBP |
∴△MQD≌△NPB(SAS).
∴四边形MPNQ是平行四边形,
∵M是AD中点,Q是DN中点,
∴MQ=
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 |
2 |
∴MQ=
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 |
2 |
∵MP=
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
1 |
2 |
∴MP=MQ,
∴平行四边形MQNP是菱形.
看了 如图,在矩形ABCD中,M、...的网友还看了以下:
八下相似三角形题如图,已知在梯形ABCD中,AD‖BC,∠A=90°,AB=7,AD=2,BC=3 2020-04-25 …
如图,在平行四边形ABCD中,点P是对角线BD上的一个动点(点P与点B、点D不重合),过点P作EF 2020-05-13 …
正方体ABCD-A’B"C"D"中P,Q,R分别是AB,AD,BC的中点,那么正方体的过P,Q,R 2020-05-13 …
已知正方形ABCD的边长为4厘米,动点P从点B出发,以2cm/s的速度,没B-C-D方向向点D运动 2020-05-14 …
已知角AOB=30度,点P在角AOB内部,P'与P关于OA对称,则O,P,P'三点所构成的三角形是 2020-06-06 …
如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、 2020-06-13 …
函数题长方形ABCD中,AB=3,AD=4,动点P沿A\B\C\D的路线由A运动到D,长方形ABC 2020-06-27 …
AB垂直MN,CD垂直MN垂足分别为B,D,AB=2,CD=4,BD=3.在直线MN上是否存在点P 2020-07-09 …
深水爆炸形成的气泡的振荡周期为T=p^a×d^b×e^c,式中p为压强,d是水的密度,e是爆炸的总能 2020-11-07 …
a+b>=2根号ab,p反比例上任一点,过p做x,y轴的垂线交点为C,D.A(四边形面积最小时,四边 2020-12-25 …