早教吧作业答案频道 -->数学-->
(2013•贵阳)在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边分别
题目详情
(2013•贵阳)在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).
(1)当△ABC三边分别为6、8、9时,△ABC为______三角形;当△ABC三边分别为6、8、11时,△ABC为______三角形.
(2)猜想,当a2+b2______c2时,△ABC为锐角三角形;当a2+b2______c2时,△ABC为钝角三角形.
(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.
(1)当△ABC三边分别为6、8、9时,△ABC为______三角形;当△ABC三边分别为6、8、11时,△ABC为______三角形.
(2)猜想,当a2+b2______c2时,△ABC为锐角三角形;当a2+b2______c2时,△ABC为钝角三角形.
(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.
▼优质解答
答案和解析
(1)两直角边分别为6、8时,斜边=
=10,
∴△ABC三边分别为6、8、9时,△ABC为锐角三角形;
当△ABC三边分别为6、8、11时,△ABC为钝角三角形;
故答案为:锐角;钝角;
(2)当a2+b2>c2时,△ABC为锐角三角形;
当a2+b2<c2时,△ABC为钝角三角形;
故答案为:>;<;
(3)∵c为最长边,2+4=6,
∴4≤c<6,
a2+b2=22+42=20,
①a2+b2>c2,即c2<20,0<c<2
,
∴当4≤c<2
时,这个三角形是锐角三角形;
②a2+b2=c2,即c2=20,c=2
,
∴当c=2
时,这个三角形是直角三角形;
③a2+b2<c2,即c2>20,c>2
,
∴当2
<c<6时,这个三角形是钝角三角形.
62+82 |
∴△ABC三边分别为6、8、9时,△ABC为锐角三角形;
当△ABC三边分别为6、8、11时,△ABC为钝角三角形;
故答案为:锐角;钝角;
(2)当a2+b2>c2时,△ABC为锐角三角形;
当a2+b2<c2时,△ABC为钝角三角形;
故答案为:>;<;
(3)∵c为最长边,2+4=6,
∴4≤c<6,
a2+b2=22+42=20,
①a2+b2>c2,即c2<20,0<c<2
5 |
∴当4≤c<2
5 |
②a2+b2=c2,即c2=20,c=2
5 |
∴当c=2
5 |
③a2+b2<c2,即c2>20,c>2
5 |
∴当2
5 |
看了 (2013•贵阳)在△ABC...的网友还看了以下:
已知a,b,c是不全相等的整数,求证2(a^3+b^3+c^3)>(a^2)(b+c)+(b^2) 2020-04-22 …
a,b,c成等差数列,那么证明a^2(b+c),b^2(a+c),c^2(b+c)成等差数列a^2 2020-04-26 …
如何确定偏导数极值?例如:已知a,b,c是满足a^2=b^2+c^2的正数,求函数f(a,b,c) 2020-04-26 …
关于一元二次方程解的情况题:已知实数a,b,c,且a^2+b^2+c^2=a+b+c=2,求a,b 2020-05-17 …
已知a+b+c=0,试求a^2/(2a^2+bc)+b^2/(2b^2+ac)+c^2/(2c^2 2020-06-11 …
M=a(b+c-a)^2+b(c+a-b)^2+c(a+b-c)^2;N=(b+c-a)(c+a- 2020-06-12 …
a,b,c都是正数,a^2/(b+c)+b^2/(a+c)+c^2/(a+b)与(a+b+c)/2 2020-07-09 …
在△ABC中,∠A∠B,∠C的对边分别为a,b,c,且aˆ2=(b+c)(b-c),则()A.∠A 2020-07-09 …
已知实数a,b,c满足a/(b+c)+b/(c+a)+c/(a+b)=1,则a^2/(b+c)+b 2020-07-20 …
已知a,b,c均大于0,且a^2(b+c)+b^2(c+a)+c^2(a+b)-a^3-b^3-c 2020-07-30 …