早教吧作业答案频道 -->数学-->
如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论错误的是()A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°
题目详情
如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论错误的是( )
A. △BPQ是等边三角形
B. △PCQ是直角三角形
C. ∠APB=150°
D. ∠APC=135°

B. △PCQ是直角三角形
C. ∠APB=150°
D. ∠APC=135°
▼优质解答
答案和解析
∵△ABC是等边三角形,
∴∠ABC=60°,
∵△BQC≌△BPA,
∴∠BPA=∠BQC,BP=BQ=4,QC=PA=3,∠ABP=∠QBC,
∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°,
∴△BPQ是等边三角形,
∴PQ=BP=4,
∵PQ2+QC2=42+32=25,PC2=52=25,
∴PQ2+QC2=PC2,
∴∠PQC=90°,即△PQC是直角三角形,
∵△BPQ是等边三角形,
∴∠BOQ=∠BQP=60°,
∴∠BPA=∠BQC=60°+90°=150°,
∴∠APC=360°-150°-60°-∠QPC=150°-∠QPC,
∵∠PQC=90°,PQ≠QC,
∴∠QPC≠45°,
即∠APC≠135°,
∴选项A、B、C正确,选项D错误.
故选D.
∴∠ABC=60°,
∵△BQC≌△BPA,
∴∠BPA=∠BQC,BP=BQ=4,QC=PA=3,∠ABP=∠QBC,
∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°,
∴△BPQ是等边三角形,
∴PQ=BP=4,
∵PQ2+QC2=42+32=25,PC2=52=25,
∴PQ2+QC2=PC2,
∴∠PQC=90°,即△PQC是直角三角形,
∵△BPQ是等边三角形,
∴∠BOQ=∠BQP=60°,
∴∠BPA=∠BQC=60°+90°=150°,
∴∠APC=360°-150°-60°-∠QPC=150°-∠QPC,
∵∠PQC=90°,PQ≠QC,
∴∠QPC≠45°,
即∠APC≠135°,
∴选项A、B、C正确,选项D错误.
故选D.
看了 如图,P是等边三角形ABC内...的网友还看了以下:
这个怎么算?已知P(A)=P(B)=P(C)=1/4,P(AB)=0,P(AC)=P(BC)=1/ 2020-05-13 …
若m乘以a的p次方乘以b的q次方与-3乘以a乘以b的2p+1次方的差为-1.5乘以a的p次方乘以b 2020-05-13 …
已知线段AB=acm,P、Q是线段AB上的两个动点,点P从点A出发沿AB以每秒80cm的速度向B运 2020-06-02 …
数三全书概率论P415的例1.2设事件A,B和A∪B的概率分别为0.2,0.3和0.4,则P(A∪ 2020-06-13 …
设有四张卡片分别标以数字1,2,3,4.今任取一张.设事件A为取到4或2,事件B为取到4或3,事件 2020-06-18 …
设矩阵P^(-1)*A*P=B,已知P和B,求A^11?其中P为一般矩阵,B为对焦矩阵,解:依题意 2020-07-10 …
Rt△AOB在平面直角坐标系内的位置如图所示,点O为原点,点A(0,8),点B(6,0),点P在线 2020-07-21 …
Rt△AOB在平面直角坐标系内的位置如图所示,点O为原点,点A(0,8),点B(6,0),点P在线 2020-07-31 …
有关概率的!书上写的公式是:P(A+B)=P(A)+P(B)-P(AB)但是我想啊,A+B是指A与B 2020-11-28 …
如果两个随机变量A和B独立则P(A+B)=P(A)+P(B)吗?P(A+B)=P(A)+P(B)-P 2020-12-28 …