早教吧作业答案频道 -->数学-->
以等腰直角三角形斜边BC上的高AD为折痕,把△ADB和△ADC折成互相垂直的两个面,求证:(1)BD⊥AC;(2)∠BAC=60°用向量法
题目详情
以等腰直角三角形斜边BC上的高AD为折痕,把 △ADB和 △ADC折成互相垂直的两个面,求证:(1)BD⊥AC;(2)∠BAC=60°
用向量法
用向量法
▼优质解答
答案和解析
(1)这题用向量法要麻烦一些,建议用综合法
证明:AD ⊥BD,AD ⊥CD,所以 ∠BDC为二面角B-AD-C的平面角,所以 ∠BDC=90度
所以 BD⊥CD.又 BD⊥AD
所以 BD⊥面ADC 所以 BD⊥AC
(2)连接BC,在原 △ABC中,AB=AC,AD⊥BC,所以BD=DC,设BD=a,则折后BC=√2 a
AB=AC=√2a,所以 △ABC为正三角形,所以 ∠BAC=60°
证明:AD ⊥BD,AD ⊥CD,所以 ∠BDC为二面角B-AD-C的平面角,所以 ∠BDC=90度
所以 BD⊥CD.又 BD⊥AD
所以 BD⊥面ADC 所以 BD⊥AC
(2)连接BC,在原 △ABC中,AB=AC,AD⊥BC,所以BD=DC,设BD=a,则折后BC=√2 a
AB=AC=√2a,所以 △ABC为正三角形,所以 ∠BAC=60°
看了 以等腰直角三角形斜边BC上的...的网友还看了以下:
1.a≠0,b≠0,则a/|a|+b/|b|的不同取值的个数为()A.3B.2C.1D.02.若|x 2020-03-31 …
基本不等式超费解130已知a>b>0,求a2+1/(a*b)+1/[a*(a-b)]的最小值.a2 2020-05-13 …
如图反映的是价格变动对A、B两种商品需求量的影响,P为商品价格,Q为需求量。据此可以判断出()A. 2020-05-14 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
已知a>0,设命题p:函数y=a^x为减函数,命题q:当x[1/2,2]时,y=x+1/x>1/a 2020-05-17 …
十分之九/a(a为非零数),a为何值时,商大于被除数?a为何值时上等于被除数?a为何值时十分之九/ 2020-06-14 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
已知ab不等于0且互为相反数则()A.a的n次方与b的n次方一定互为相反数B.a^2n与b^2n一定 2020-12-01 …
递回关系式的运算公式(数列)以下是推导一个公式"a=a+r(1-p^n)/(1-p)"的过程a=p* 2021-01-13 …
求导已知函数f(x)=x2-2lnx+a(a为实数)(1)求f(x)的单调区间(2)若对于x1,x2 2021-02-16 …