早教吧作业答案频道 -->数学-->
求救偏微分方程u(x,y,z)在区域B内二阶连续可微,在B边界上一阶连续可微我们有拉普拉斯u=u^7,且在边界上有:u的外法向导数+f(x)*u=gf(x)>=p>0,p为某一正实数求证:1、在区域B内u没有正最大
题目详情
求救偏微分方程
u(x,y,z)在区域B内二阶连续可微,在B边界上一阶连续可微
我们有 拉普拉斯u=u^7,
且在边界上有 :
u的外法向导数+f(x)*u=g
f(x)>=p>0,p为某一正实数
求证:1、在区域B内u没有正最大值或者负最小值
2、max|u(x)|
u(x,y,z)在区域B内二阶连续可微,在B边界上一阶连续可微
我们有 拉普拉斯u=u^7,
且在边界上有 :
u的外法向导数+f(x)*u=g
f(x)>=p>0,p为某一正实数
求证:1、在区域B内u没有正最大值或者负最小值
2、max|u(x)|
▼优质解答
答案和解析
1. 假定u在B内部的某点x0取到最小值,那么u(x)在x0处的一阶偏导为0,Hesse矩阵半正定.
注意到Δu是Hesse矩阵的迹,一定非负,所以u^7=Δu>=0,即u(x0)>=0,说明最小值一定不是负的.同理正的最大值也取不到.
2. 注意max|u(x)|一定是在u(x)正的最大值或者负的最小值处取到,除非u恒为0(此时结论显然).利用前面的结论,max|u(x)|一定在B的边界上取到.比如说max|u(x)|=u(x1),x1在B的边界上,那么该点处的外法向导数(简记为u')非负,所以0
注意到Δu是Hesse矩阵的迹,一定非负,所以u^7=Δu>=0,即u(x0)>=0,说明最小值一定不是负的.同理正的最大值也取不到.
2. 注意max|u(x)|一定是在u(x)正的最大值或者负的最小值处取到,除非u恒为0(此时结论显然).利用前面的结论,max|u(x)|一定在B的边界上取到.比如说max|u(x)|=u(x1),x1在B的边界上,那么该点处的外法向导数(简记为u')非负,所以0
看了 求救偏微分方程u(x,y,z...的网友还看了以下:
1.求函数f(x)=sin(-x+π/3)在[π/6,/2π]上的值域2.求函数f(x)=sin( 2020-04-27 …
已知函数f(X)=x^(-1/2p^2+p+3/2)(p属于Z)在(0,+无穷)上是增函数,且在其 2020-05-13 …
windows网络服务器配置课程试卷求帮忙做下判断题和简答题!Ⅱ.判断题1.在域中的计算机依其功能 2020-06-06 …
物理题目1.铁锅可以用来融化吕块,但铝锅却不可以用来融化铁块,由此可以判断出2.为了让高热病人迅速 2020-06-13 …
试构造函数f(x),g(x),其定义域为(0,1),值域为[0,1]并满足如下条件:试构造函数f( 2020-07-26 …
设f(x)的定义域是0,1,则f(x+a)(a>0)的定义域是1.函数y=x-cosx在定义域内是 2020-07-31 …
设f(x)在x=0的某个领域U(0,m)内有定义设f(x)在x=0的某个邻域U(0,m)内有定义, 2020-07-31 …
哪些代数数域中素因数的唯一分解性成立?又在哪些数域中不成立?怎么判定?如题.比如,有理数域中的整数素 2020-11-02 …
在一个不透明的口袋里装有红、白、黑三种颜色的小球若干个,他们只有颜色不同,其中白球有2个,黑球有1. 2020-11-04 …
区域是客观存在的,具有一定的范围和界线,有的界线明确,有的具有一定的过渡性或模糊性,如图所示。据此完 2020-12-05 …