早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知向量a=(sin(π2+x),3cosx),b=(sinx,cosx),f(x)=a•b.(1)求f(x)的最小正周期和单调增区间;(2)如果三角形ABC中,满足f(A)=32,求角A的值.

题目详情
已知向量a=(sin(
π
2
+x),
3
cosx),b=(sinx,cosx),f(x)=a•b.
(1)求f(x)的最小正周期和单调增区间;
(2)如果三角形ABC中,满足f(A)=
3
2
,求角A的值.
▼优质解答
答案和解析
(1)f(x)=sinxcosx+
3
2
+
3
2
cos2x=sin(2x+
π
3
)+
3
2

T=π,2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
,k∈Z,
最小周期为π,单调增区间[kπ
12
,kπ+
π
12
],k∈Z
(2)由sin(2A+
π
3
)=0,
π
3
<2A+
π
3
3

所以,2A+
π
3
=π或2π,
所以,A=
π
3
6