早教吧作业答案频道 -->数学-->
(((x+2y)^2)+1)/(x+2y)=2,x和y属于实数,求(x^2)+(y+1)^2的最小(((x+2y)^2)+1)/(x+2y)=2,x和y属于实数,求(x^2)+(y+1)^2的最小值
题目详情
(((x+2y)^2)+1)/(x+2y)=2,x和y属于实数,求(x^2)+(y+1)^2的最小
(((x+2y)^2)+1)/(x+2y)=2,x和y属于实数,
求(x^2)+(y+1)^2的最小值
(((x+2y)^2)+1)/(x+2y)=2,x和y属于实数,
求(x^2)+(y+1)^2的最小值
▼优质解答
答案和解析
答:
[ (x+2y)²+1 ] /(x+2y)=2
(x+2y)²+1=2(x+2y)
(x+2y)²-2(x+2y)+1²=0
(x+2y-1)²=0
所以:x+2y=1
所以:
x²+(y+1)²
=(1-2y)²+(y+1)²
=1-4y+4y²+y²+2y+1
=5y²-2y+2
=5(y-1/5)²+9/5
>=9/5
所以:最小值为9/5
[ (x+2y)²+1 ] /(x+2y)=2
(x+2y)²+1=2(x+2y)
(x+2y)²-2(x+2y)+1²=0
(x+2y-1)²=0
所以:x+2y=1
所以:
x²+(y+1)²
=(1-2y)²+(y+1)²
=1-4y+4y²+y²+2y+1
=5y²-2y+2
=5(y-1/5)²+9/5
>=9/5
所以:最小值为9/5
看了 (((x+2y)^2)+1)...的网友还看了以下: