早教吧作业答案频道 -->数学-->
已知数列{an}的前n项和为Sn,且Sn=2an-2;数列{bn}的首项为1,点P(n,bn)都在斜率为2的同一条直线l上(以上n∈N*).求:(1)数列{an}、{bn}的通项公式;(2)求数列{abn}、{ban}的前n项和.
题目详情
nnnnnn
nn
bnan
nn
bnan
▼优质解答
答案和解析
(1)当n=1时,a11=S11=2a11-2∴a11=2
当n≥2时,ann=Snn-Sn-1n-1=2ann-2-(2an-1n-1-2)=2ann-2an-1n-1
∴ann=2an-1n-1
∴{ann}是以2为首项,2为公比的等比数列,即ann=2nn
由题意可知,
=2
∴bn=2n-1
(2)由(1)可知:abn=2bn=22n−1,
数列{abn}的前n项和为21+23+25+…+22n−1=
=
由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
bn−b1 bn−b1 bn−b1n−b11n−1 n−1 n−1=2
∴bnn=2n-1
(2)由(1)可知:abn=2bn=22n−1,
数列{abn}的前n项和为21+23+25+…+22n−1=
=
由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
abn=2bn=22n−1,
数列{abn}的前n项和为21+23+25+…+22n−1=
=
由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
bn=2bn=22n−1,
数列{abn}的前n项和为21+23+25+…+22n−1=
=
由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
n=2bn=22n−1,
数列{abn}的前n项和为21+23+25+…+22n−1=
=
由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
bn=22n−1,
数列{abn}的前n项和为21+23+25+…+22n−1=
=
由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
n=22n−1,
数列{abn}的前n项和为21+23+25+…+22n−1=
=
由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
2n−1,
数列{abnbn}的前n项和为21+23+25+…+22n−1=
=
由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
21+23+25+…+22n−1=
=
由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
1+23+25+…+22n−1=
=
由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
3+25+…+22n−1=
=
由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
5+…+22n−1=
=
由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
2n−1=
2−22n−1•4 2−22n−1•4 2−22n−1•42n−1•41−4 1−4 1−4=
22n+1−2 22n+1−2 22n+1−22n+1−23 3 3
由(1)可知:banan=2ann-1=2n+1n+1-1,
数列{banan}的前n项和为:
22−1+23−1+24−1+…+2n+1−1 22−1+23−1+24−1+…+2n+1−1 22−1+23−1+24−1+…+2n+1−12−1+23−1+24−1+…+2n+1−13−1+24−1+…+2n+1−14−1+…+2n+1−1n+1−1=(22+23+24+…+2n+1)−(1+1+1+…+1) =(22+23+24+…+2n+1)−(1+1+1+…+1) =(22+23+24+…+2n+1)−(1+1+1+…+1)2+23+24+…+2n+1)−(1+1+1+…+1)3+24+…+2n+1)−(1+1+1+…+1)4+…+2n+1)−(1+1+1+…+1)n+1)−(1+1+1+…+1)=
−n =
−n =
22−2n+1×2 22−2n+1×2 22−2n+1×22−2n+1×2n+1×21−2 1−2 1−2−n=2n+2−n−4 =2n+2−n−4 =2n+2−n−4n+2−n−4
当n≥2时,ann=Snn-Sn-1n-1=2ann-2-(2an-1n-1-2)=2ann-2an-1n-1
∴ann=2an-1n-1
∴{ann}是以2为首项,2为公比的等比数列,即ann=2nn
由题意可知,
bn−b1 |
n−1 |
∴bn=2n-1
(2)由(1)可知:abn=2bn=22n−1,
数列{abn}的前n项和为21+23+25+…+22n−1=
2−22n−1•4 |
1−4 |
22n+1−2 |
3 |
由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
|
bn−b1 |
n−1 |
∴bnn=2n-1
(2)由(1)可知:abn=2bn=22n−1,
数列{abn}的前n项和为21+23+25+…+22n−1=
2−22n−1•4 |
1−4 |
22n+1−2 |
3 |
由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
|
数列{abn}的前n项和为21+23+25+…+22n−1=
2−22n−1•4 |
1−4 |
22n+1−2 |
3 |
由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
|
数列{abn}的前n项和为21+23+25+…+22n−1=
2−22n−1•4 |
1−4 |
22n+1−2 |
3 |
由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
|
数列{abn}的前n项和为21+23+25+…+22n−1=
2−22n−1•4 |
1−4 |
22n+1−2 |
3 |
由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
|
数列{abn}的前n项和为21+23+25+…+22n−1=
2−22n−1•4 |
1−4 |
22n+1−2 |
3 |
由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
|
数列{abn}的前n项和为21+23+25+…+22n−1=
2−22n−1•4 |
1−4 |
22n+1−2 |
3 |
由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
|
数列{abnbn}的前n项和为21+23+25+…+22n−1=
2−22n−1•4 |
1−4 |
22n+1−2 |
3 |
由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
|
2−22n−1•4 |
1−4 |
22n+1−2 |
3 |
由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
|
2−22n−1•4 |
1−4 |
22n+1−2 |
3 |
由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
|
2−22n−1•4 |
1−4 |
22n+1−2 |
3 |
由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
|
2−22n−1•4 |
1−4 |
22n+1−2 |
3 |
由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
|
2−22n−1•4 |
1−4 |
22n+1−2 |
3 |
由(1)可知:banan=2ann-1=2n+1n+1-1,
数列{banan}的前n项和为:
|
|
22−1+23−1+24−1+…+2n+1−1 | ||
=(22+23+24+…+2n+1)−(1+1+1+…+1) | ||
=
| ||
=2n+2−n−4 |
22−1+23−1+24−1+…+2n+1−1 | ||
=(22+23+24+…+2n+1)−(1+1+1+…+1) | ||
=
| ||
=2n+2−n−4 |
22−1+23−1+24−1+…+2n+1−1 | ||
=(22+23+24+…+2n+1)−(1+1+1+…+1) | ||
=
| ||
=2n+2−n−4 |
22−2n+1×2 |
1−2 |
22−2n+1×2 |
1−2 |
22−2n+1×2 |
1−2 |
看了 已知数列{an}的前n项和为...的网友还看了以下:
数列问题会的来不要去网上复制~网上没答案~已知点(1,2)是函数f(x)=a的x次方(a>0且a不 2020-05-13 …
数列a(n+1)=an+1/an问题求ana(n+1)=an+1/an就是第n+1项等于第n项加上 2020-05-17 …
括号内为下标:S(n)为a(n)的前n项和.a(1)=a,a(n+1)=S(n)+3^n.设b(n 2020-05-22 …
请教一道数列题{An}首相为1,且8倍的第n+1项与第n项的乘积减去16倍的第n+1项再加上2倍的 2020-06-03 …
已知点(1,1/3)是函数f(x)=a^x图像上一点已知点(1,1/3)是函数f(x)=a^x(a 2020-06-12 …
下列关于叶片结构的几种说法,错误的一项上A.叶片由表皮.叶脉和叶肉三部分组成B叶肉分为栅拦组织和海 2020-06-28 …
走过路过不要错过寻求好心人解答很急-------------------------------- 2020-07-04 …
已知等差数列an中,am=n,an=m,(m≠n)求这个数列的第m+n项及a(m+n) 2020-07-23 …
设{a下n}是公比大于1的等比数列,s下n为其前n项和,已知s下3=7,且a下1+3,3a下2,a 2020-07-30 …
1.设{An}是首项为1的正项数列,且(n+1)a的平方的小n+1减na平方的第n项加a的第n项+ 2020-07-30 …