早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知数列{an}的前n项和为Sn,且Sn=2an-2;数列{bn}的首项为1,点P(n,bn)都在斜率为2的同一条直线l上(以上n∈N*).求:(1)数列{an}、{bn}的通项公式;(2)求数列{abn}、{ban}的前n项和.

题目详情
nnnnnn
nn
bnan
▼优质解答
答案和解析
(1)当n=1时,a11=S11=2a11-2∴a11=2
当n≥2时,ann=Snn-Sn-1n-1=2ann-2-(2an-1n-1-2)=2ann-2an-1n-1
∴ann=2an-1n-1
∴{ann}是以2为首项,2为公比的等比数列,即ann=2nn
由题意可知,
bn−b1
n−1
=2
∴bn=2n-1
(2)由(1)可知:abn=2bn=22n−1,
数列{abn}的前n项和为21+23+25+…+22n−1=
2−22n−1•4
1−4
22n+1−2
3

由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
22−1+23−1+24−1+…+2n+1−1
=(22+23+24+…+2n+1)−(1+1+1+…+1)
22−2n+1×2
1−2
−n
=2n+2−n−4
bn−b1
n−1
bn−b1bn−b1bn−b1n−b11n−1n−1n−1=2
∴bnn=2n-1
(2)由(1)可知:abn=2bn=22n−1,
数列{abn}的前n项和为21+23+25+…+22n−1=
2−22n−1•4
1−4
22n+1−2
3

由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
22−1+23−1+24−1+…+2n+1−1
=(22+23+24+…+2n+1)−(1+1+1+…+1)
22−2n+1×2
1−2
−n
=2n+2−n−4
abn=2bn=22n−1,
数列{abn}的前n项和为21+23+25+…+22n−1=
2−22n−1•4
1−4
22n+1−2
3

由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
22−1+23−1+24−1+…+2n+1−1
=(22+23+24+…+2n+1)−(1+1+1+…+1)
22−2n+1×2
1−2
−n
=2n+2−n−4
bn=2bn=22n−1,
数列{abn}的前n项和为21+23+25+…+22n−1=
2−22n−1•4
1−4
22n+1−2
3

由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
22−1+23−1+24−1+…+2n+1−1
=(22+23+24+…+2n+1)−(1+1+1+…+1)
22−2n+1×2
1−2
−n
=2n+2−n−4
n=2bn=22n−1,
数列{abn}的前n项和为21+23+25+…+22n−1=
2−22n−1•4
1−4
22n+1−2
3

由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
22−1+23−1+24−1+…+2n+1−1
=(22+23+24+…+2n+1)−(1+1+1+…+1)
22−2n+1×2
1−2
−n
=2n+2−n−4
bn=22n−1,
数列{abn}的前n项和为21+23+25+…+22n−1=
2−22n−1•4
1−4
22n+1−2
3

由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
22−1+23−1+24−1+…+2n+1−1
=(22+23+24+…+2n+1)−(1+1+1+…+1)
22−2n+1×2
1−2
−n
=2n+2−n−4
n=22n−1,
数列{abn}的前n项和为21+23+25+…+22n−1=
2−22n−1•4
1−4
22n+1−2
3

由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
22−1+23−1+24−1+…+2n+1−1
=(22+23+24+…+2n+1)−(1+1+1+…+1)
22−2n+1×2
1−2
−n
=2n+2−n−4
2n−1,
数列{abnbn}的前n项和为21+23+25+…+22n−1=
2−22n−1•4
1−4
22n+1−2
3

由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
22−1+23−1+24−1+…+2n+1−1
=(22+23+24+…+2n+1)−(1+1+1+…+1)
22−2n+1×2
1−2
−n
=2n+2−n−4
21+23+25+…+22n−1=
2−22n−1•4
1−4
22n+1−2
3

由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
22−1+23−1+24−1+…+2n+1−1
=(22+23+24+…+2n+1)−(1+1+1+…+1)
22−2n+1×2
1−2
−n
=2n+2−n−4
1+23+25+…+22n−1=
2−22n−1•4
1−4
22n+1−2
3

由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
22−1+23−1+24−1+…+2n+1−1
=(22+23+24+…+2n+1)−(1+1+1+…+1)
22−2n+1×2
1−2
−n
=2n+2−n−4
3+25+…+22n−1=
2−22n−1•4
1−4
22n+1−2
3

由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
22−1+23−1+24−1+…+2n+1−1
=(22+23+24+…+2n+1)−(1+1+1+…+1)
22−2n+1×2
1−2
−n
=2n+2−n−4
5+…+22n−1=
2−22n−1•4
1−4
22n+1−2
3

由(1)可知:ban=2an-1=2n+1-1,
数列{ban}的前n项和为:
22−1+23−1+24−1+…+2n+1−1
=(22+23+24+…+2n+1)−(1+1+1+…+1)
22−2n+1×2
1−2
−n
=2n+2−n−4
2n−1=
2−22n−1•4
1−4
2−22n−1•42−22n−1•42−22n−1•42n−1•41−41−41−4=
22n+1−2
3
22n+1−222n+1−222n+1−22n+1−2333
由(1)可知:banan=2ann-1=2n+1n+1-1,
数列{banan}的前n项和为:
22−1+23−1+24−1+…+2n+1−1
=(22+23+24+…+2n+1)−(1+1+1+…+1)
22−2n+1×2
1−2
−n
=2n+2−n−4
22−1+23−1+24−1+…+2n+1−1
=(22+23+24+…+2n+1)−(1+1+1+…+1)
22−2n+1×2
1−2
−n
=2n+2−n−4
22−1+23−1+24−1+…+2n+1−1
=(22+23+24+…+2n+1)−(1+1+1+…+1)
22−2n+1×2
1−2
−n
=2n+2−n−4
22−1+23−1+24−1+…+2n+1−1
=(22+23+24+…+2n+1)−(1+1+1+…+1)
22−2n+1×2
1−2
−n
=2n+2−n−4
22−1+23−1+24−1+…+2n+1−1
=(22+23+24+…+2n+1)−(1+1+1+…+1)
22−2n+1×2
1−2
−n
=2n+2−n−4
22−1+23−1+24−1+…+2n+1−122−1+23−1+24−1+…+2n+1−122−1+23−1+24−1+…+2n+1−12−1+23−1+24−1+…+2n+1−13−1+24−1+…+2n+1−14−1+…+2n+1−1n+1−1=(22+23+24+…+2n+1)−(1+1+1+…+1)=(22+23+24+…+2n+1)−(1+1+1+…+1)=(22+23+24+…+2n+1)−(1+1+1+…+1)2+23+24+…+2n+1)−(1+1+1+…+1)3+24+…+2n+1)−(1+1+1+…+1)4+…+2n+1)−(1+1+1+…+1)n+1)−(1+1+1+…+1)=
22−2n+1×2
1−2
−n=
22−2n+1×2
1−2
−n=
22−2n+1×2
1−2
22−2n+1×222−2n+1×222−2n+1×22−2n+1×2n+1×21−21−21−2−n=2n+2−n−4=2n+2−n−4=2n+2−n−4n+2−n−4