早教吧作业答案频道 -->数学-->
已知f(x)=﹣x-x³,x1,x2,x3∈R且x1+x2>0,x2+x3>0,x1+x3>0.求证:f(x1)+f(x2)+f(x3)<0
题目详情
已知f(x)=﹣x-x³,x1,x2,x3∈R且x1+x2>0,x2+x3>0,x1+x3>0.求证:f(x1)+f(x2)+f(x3)<0
▼优质解答
答案和解析
f(x1)+f(x2)+f(x3)=﹣x1-x1³-x2-x2³-x3-x3³
=-1/2(x1+x2)-1/2(x2+x3)-1/2(x1+x3)-1/2(x1³+x2³)-1/2(x3³+x2³)-1/2(x1³+x3³)
应为 x1+x2>0,x2+x3>0,x1+x3>0.所以 前三项都小于0
讨论后三项
a³+b³=(a+b)*(a²+ab+b²)
应为a²+ab+b²=a²+ab+1/4b²+3/4b²=(a+1/2b)²+3/4b²≥0
应为a+b>0
所以
a³+b³=(a+b)*(a²+ab+b²)≥0
所以 后三项-1/2(x1³+x2³)≤0
所以 原式<0
注:主要用到了 立方和公式
=-1/2(x1+x2)-1/2(x2+x3)-1/2(x1+x3)-1/2(x1³+x2³)-1/2(x3³+x2³)-1/2(x1³+x3³)
应为 x1+x2>0,x2+x3>0,x1+x3>0.所以 前三项都小于0
讨论后三项
a³+b³=(a+b)*(a²+ab+b²)
应为a²+ab+b²=a²+ab+1/4b²+3/4b²=(a+1/2b)²+3/4b²≥0
应为a+b>0
所以
a³+b³=(a+b)*(a²+ab+b²)≥0
所以 后三项-1/2(x1³+x2³)≤0
所以 原式<0
注:主要用到了 立方和公式
看了 已知f(x)=﹣x-x³,x...的网友还看了以下:
f(x)=log2(1+bx/1+x)(b不等于0)为奇函数 1,求函数的单调区间 2,解不等式f 2020-05-14 …
已知函数f(x)=(x^2+2x+a)/x,x∈[1,+∞).(1)当a=0.5时,求函数f(x) 2020-05-15 …
高一函数中映射的问题已知集合A={x,y},B={0,1}.构造从集合A到集合B的映射,试问能构造 2020-05-22 …
设函数f(X)在负无穷到正无穷上满足f(2-X)=f(2+x),f(7-x)=f(7+x),且在闭 2020-06-14 …
求帮忙解释麦克老林公式疑惑设f在[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f 2020-06-18 …
[f(x+hx)/f(x)]^(1/h)当h趋于0时的极限为e^(1/x),且f(x)趋于正无穷极 2020-07-16 …
一些题很简单的一定要帮我16,100+0,1×2+0,1×3+0,1×4+……+0,1×9917, 2020-07-24 …
三角形木屋架杆件体积计算公式如何?我在书上看到一道题,三角形木屋架,下弦杆长8m,尾径ф15cm, 2020-07-30 …
已知函数f(x)=ax^2+bx+c(c≠0),满足f(-1)=f(3)=0,且f(0)=6,求f( 2020-12-08 …
设f(0)=1,f'(0)=-1,则极限lim〔f(lnx)-1〕/1-x=?x趋向1的时候设f(0 2020-12-15 …