早教吧 育儿知识 作业答案 考试题库 百科 知识分享

奇函数f(x)满足f(x+2)=f(x)当x属于(0,1)时f(x)=2^x则f(log0.5底23)=

题目详情
奇函数f(x)满足f(x+2)=f(x)当x属于(0,1)时f(x)=2^x则f(log0.5底23)=
▼优质解答
答案和解析
log0.5底23=lg23/lg0.5=lg23/(-lg2)
所以f(log0.5底23)=f[-log2(23)],奇函数,所以=-f[log2(23)]
由f(x+2)=f(x),所以f(x+4)=f(x+2+2)=f(x+2)=f(x)所以4是f(x)的周期
所以=-f[log2(23)-4]
=-f[log2(23)-log2(16)]
=-f[log2(23/16)]
1