早教吧作业答案频道 -->数学-->
设函数f(x)=x2-ax+b,a,b∈R.(1)已知f(x)在区间(-∞,1)上单调递减,求a的取值范围;(2)存在实数a,使得当x∈[0,b]时,2≤f(x)≤6恒成立,求b的最大值及此时a的值
题目详情
设函数f(x)=x2-ax+b,a,b∈R. (1)已知f(x)在区间(-∞,1)上单调递减,求
a的取值范围;
(2)存在实数a,使得当x∈[0,b]时,2≤f(x)≤6恒成立,求b的最大值及此时a的值
a的取值范围;
(2)存在实数a,使得当x∈[0,b]时,2≤f(x)≤6恒成立,求b的最大值及此时a的值
▼优质解答
答案和解析
(1)∵函数的对称轴为x=a/2 ,
∴要使f(x)在区间(-∞,1)上单调递减,则满足对称轴x=a/2 ≥1,即a≥2.
(2)∵当x∈[0,b]时,2≤f(x)≤6恒成立,
∴b>0,
①若a≤0,则a 2
≤1,此时f(x)在[0,b]上单调递增,
∴f(x)min=f(0)≥2
f(x) max=f(b)≤6 ,
即b≥2
b2−ab+b≤6 ,
由b2-ab+b≤6得a≥b-6/b+1≥2−6/2 +1=0,
∴a=0,此时
b≥2 b2+b≤6 ,解得
a=0 b=2
②若0<a/2<b/2,即0<a<b,此时
f(x)min=f(a/2 )≥2 f(x)max=f(b)≤6 ,
即
b−a^2/4 ≥2
b2−ab+b≤6
0<a<b ,
∴b≥a2/4 +2
a≥b−6/ b +1
0<a<b ,
即
b≥2 b−6/b +1<b ,
∴2<b<6,
又b-a^2/4≥2,则a≤2√b−2 ,
∴b-6/b +1≤2√b−2 ,
令h(x)=x-6/ x +1,g(x)=2√x−2 ,
∴h(2)=g(2)=0,h(3)=g(3)=2,且h(x)与g(x)均在(2,6)上单调递增,
当2<x<3时,h(x)的图象在g(x)图象的下方,即此时h(x)<g(x),
∴不等式b-6 /b +1≤2√b−2 的解为2<b≤3,
当b=3时,
3−a2 /4 ≥2
32−3a+3≤6
0<a<3 ,即
a≤2 a≥2
0<a<3
解得a=2.
③若0<a/2 =b/2,
即0<a=b,此时
f(x)min=f(a/2 )≥2 f(x)max=f(0)≤6 ,
即
b−a^2 /4 ≥2
b≤6
0<a<3
,此时不等式无解.
④若0<b /2 <a/2〈b
即0<b<a<2b,此时
f(x)min=f(a/2)≥2 f(x)max=f(0)≤6 ,即
b−a^2/4 ≥2 b≤6 即
b≥a2/4 +2
b≤6
b<a ,
∴
a2 /4+2<a,a2-4a+8<0此时不等式无解.
⑤若a/2 ≥b,即a≥2b,此时f(x)在[0,b]上单调递减,
∴f(x)min=f(b)≥2
f(x)max=f(0)≤6 ,即
b2−ab+b≥2 b≤6
a≥2b ,
即a≤b−2 /b +1
b≤6
a≥2b ,
∴2b≤b−2/ b +1,
即b+2/b ≤1,而当b>0时,b+2 /b ≥2√2 >1,∴此时不等式无解.
综上b的取值范围是[2,3],b的最大值是3,此时a=2.
———您好,百度专家组很高兴为你解答,您的采纳是我答题的动力!如果你觉得有帮助,
∴要使f(x)在区间(-∞,1)上单调递减,则满足对称轴x=a/2 ≥1,即a≥2.
(2)∵当x∈[0,b]时,2≤f(x)≤6恒成立,
∴b>0,
①若a≤0,则a 2
≤1,此时f(x)在[0,b]上单调递增,
∴f(x)min=f(0)≥2
f(x) max=f(b)≤6 ,
即b≥2
b2−ab+b≤6 ,
由b2-ab+b≤6得a≥b-6/b+1≥2−6/2 +1=0,
∴a=0,此时
b≥2 b2+b≤6 ,解得
a=0 b=2
②若0<a/2<b/2,即0<a<b,此时
f(x)min=f(a/2 )≥2 f(x)max=f(b)≤6 ,
即
b−a^2/4 ≥2
b2−ab+b≤6
0<a<b ,
∴b≥a2/4 +2
a≥b−6/ b +1
0<a<b ,
即
b≥2 b−6/b +1<b ,
∴2<b<6,
又b-a^2/4≥2,则a≤2√b−2 ,
∴b-6/b +1≤2√b−2 ,
令h(x)=x-6/ x +1,g(x)=2√x−2 ,
∴h(2)=g(2)=0,h(3)=g(3)=2,且h(x)与g(x)均在(2,6)上单调递增,
当2<x<3时,h(x)的图象在g(x)图象的下方,即此时h(x)<g(x),
∴不等式b-6 /b +1≤2√b−2 的解为2<b≤3,
当b=3时,
3−a2 /4 ≥2
32−3a+3≤6
0<a<3 ,即
a≤2 a≥2
0<a<3
解得a=2.
③若0<a/2 =b/2,
即0<a=b,此时
f(x)min=f(a/2 )≥2 f(x)max=f(0)≤6 ,
即
b−a^2 /4 ≥2
b≤6
0<a<3
,此时不等式无解.
④若0<b /2 <a/2〈b
即0<b<a<2b,此时
f(x)min=f(a/2)≥2 f(x)max=f(0)≤6 ,即
b−a^2/4 ≥2 b≤6 即
b≥a2/4 +2
b≤6
b<a ,
∴
a2 /4+2<a,a2-4a+8<0此时不等式无解.
⑤若a/2 ≥b,即a≥2b,此时f(x)在[0,b]上单调递减,
∴f(x)min=f(b)≥2
f(x)max=f(0)≤6 ,即
b2−ab+b≥2 b≤6
a≥2b ,
即a≤b−2 /b +1
b≤6
a≥2b ,
∴2b≤b−2/ b +1,
即b+2/b ≤1,而当b>0时,b+2 /b ≥2√2 >1,∴此时不等式无解.
综上b的取值范围是[2,3],b的最大值是3,此时a=2.
———您好,百度专家组很高兴为你解答,您的采纳是我答题的动力!如果你觉得有帮助,
看了 设函数f(x)=x2-ax+...的网友还看了以下:
求y=sinx+2/sinx,x∈(0,π)的最值解:令t=sinx,x∈(0,π),则t∈(0, 2020-05-13 …
一物体沿斜面向上滑动时,动能每减小1J,势能增加0.75J,当物体沿此面下滑时:D动能每增加1J, 2020-05-14 …
已知奇数f(x)的定义域为(-∞,0)U(0,+∞),且f(x)在(0,+∞)上是减函数,f(1) 2020-05-19 …
计算320-264时,个位上0减4不够减,从()位退()当()再减,个位上得();被减数十位上原来 2020-06-14 …
求x趋向0加和0减时e的x分之一次方的极限,答案我知道,可是为什么呢? 2020-07-21 …
一个两位小数,百分位上的数字是十分位上数字的2倍,这个小数加上0.09时,百分位和十分位上的数字相 2020-07-31 …
已知函数f(x)=lnx+ax2+bx(其中a,b为常数且a≠0)在x=1处取得极值.(1)当f( 2020-08-02 …
如图,在大连到烟台160千米的航线上,某轮船公司每天上午8点(x轴上0小时)到下午16点每隔2小时有 2020-11-13 …
如图,在大连到烟台160km的航线上,某轮船公司每天上午8点(x轴上0小时)到下午16点每 2020-11-13 …
(2006•大连)如图,在大连到烟台160千米的航线上,某轮船公司每天上午8点(x轴上0小时)到下午 2020-11-13 …