早教吧作业答案频道 -->数学-->
如图1,在等边△ABC中,AD⊥BC于点D,一个直径与AD相等的圆与BC相切于点E、与AB相切于点F,连接EF.(1)判断EF与AC的位置关系(不必说明理由);(2)如图2,过E作BC的垂线,交圆于G,连接A
题目详情
如图1,在等边△ABC中,AD⊥BC于点D,一个直径与AD相等的圆与BC相切于点E、与AB相切于点F,连接EF.

(1)判断EF与AC的位置关系(不必说明理由);
(2)如图2,过E作BC的垂线,交圆于G,连接AG,判断四边形ADEG的形状,并说明理由;
(3)求证:AC与GE的交点O为此圆的圆心.

(1)判断EF与AC的位置关系(不必说明理由);
(2)如图2,过E作BC的垂线,交圆于G,连接AG,判断四边形ADEG的形状,并说明理由;
(3)求证:AC与GE的交点O为此圆的圆心.
▼优质解答
答案和解析
(1)EF∥AC;
(2)四边形ADEG为矩形;
理由:
∵EG⊥BC,E为切点,
∵BC为圆O的切线,
∴EG为直径,
∴EG=AD;
又∵AD⊥BC,EG⊥BC,
∴AD∥EG,
由EG=AD,AD∥EG,
得出四边形ADEG为平行四边形,
∵∠ADE=90°,
∴平行四边形ADEG为矩形;
(3)证明:连接FG,由(2)可知EG为直径,
∴FG⊥EF;
又由(1)可知EF∥AC,
∴AC⊥FG;
又∵四边形ADEG为矩形,
∴EG⊥AG,
∴AG是已知圆的切线;
∵AF=AG,
∴AC是FG的垂直平分线,故AC必过圆心,(从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角,根据等腰三角形三线合一定理即可得出AC垂直平分FG)
∴圆心O就是AC与EG的交点.
(2)四边形ADEG为矩形;
理由:
∵EG⊥BC,E为切点,
∵BC为圆O的切线,
∴EG为直径,
∴EG=AD;
又∵AD⊥BC,EG⊥BC,
∴AD∥EG,
由EG=AD,AD∥EG,
得出四边形ADEG为平行四边形,
∵∠ADE=90°,
∴平行四边形ADEG为矩形;
(3)证明:连接FG,由(2)可知EG为直径,

∴FG⊥EF;
又由(1)可知EF∥AC,
∴AC⊥FG;
又∵四边形ADEG为矩形,
∴EG⊥AG,
∴AG是已知圆的切线;
∵AF=AG,
∴AC是FG的垂直平分线,故AC必过圆心,(从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角,根据等腰三角形三线合一定理即可得出AC垂直平分FG)
∴圆心O就是AC与EG的交点.
看了 如图1,在等边△ABC中,A...的网友还看了以下:
两个平面互相垂直,下列说法中正确的是()A.一个平面内的任一条直线必垂直于另一个平面B.分别在这两 2020-05-13 …
关于原点对称的俩个点的连线A.必垂直于x轴 B必垂直于y轴 C必经过原点 D 必在象限角的关于原点 2020-05-16 …
已知平面α与平面β相交,直线m⊥α,则()A.β内必存在直线与m平行,且存在直线与m垂直B.β内不 2020-05-24 …
钻孔多点位移计埋设方向( )。A.必须垂直向下;B.垂直向上;C.必须水平或稍有倾斜;D.任意方向均 2020-05-28 …
点在两面投影的连线,必须( )于相应的投影轴A.平行B.垂直C.相交D.垂直相交 2020-05-31 …
实数m=12是“两条直线(m+2)x+3my+1=0与(m-2)x+(m+2)y=0相互垂直”的( 2020-06-03 …
下列命题不正确的是()A.过平面外一点有且只有一条直线与该平面垂直B.如果平面的一条斜线在平面内的 2020-07-04 …
下列命题不正确的是()A.过平面外一点有且只有一条直线与该平面垂直B.如果平面的一条斜线在平面内的 2020-07-30 …
棱柱成为直棱柱的一个必要而不充分条件是A.棱柱有一条侧棱和底面垂直B.棱柱有一条侧棱和底面的两条边 2020-07-31 …
"m=1/2"是"直线(m+2)x+3my+1=0与m=1/2是直线(m+2)x+3my+1=0与直 2020-12-05 …