早教吧作业答案频道 -->数学-->
已知△ABC中,AB=AC,D、E是BC边上的点,将△ABD绕点A旋转,得到△ACD′,连结D′E.(1)如图1,当∠BAC=120°,∠DAE=60°时,求证:DE=D′E;(2)如图2,当DE=D′E时,∠DAE与∠BAC有怎样的数量关
题目详情
已知△ABC中,AB=AC,D、E是BC边上的点,将△ABD绕点A旋转,得到△ACD′,连结D′E.

(1)如图1,当∠BAC=120°,∠DAE=60°时,求证:DE=D′E;
(2)如图2,当DE=D′E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.
(3)如图3,在(2)的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,△D′EC是等腰直角三角形?(直接写出结论,不必说明理由)

(1)如图1,当∠BAC=120°,∠DAE=60°时,求证:DE=D′E;
(2)如图2,当DE=D′E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.
(3)如图3,在(2)的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,△D′EC是等腰直角三角形?(直接写出结论,不必说明理由)
▼优质解答
答案和解析
(1)证明:∵△ABD绕点A旋转得到△ACD′,
∴AD=AD′,∠CAD′=∠BAD,
∵∠BAC=120°,∠DAE=60°,
∴∠D′AE=∠CAD′+∠CAE,
=∠BAD+∠CAE,
=∠BAC-∠DAE,
=120°-60°,
=60°,
∴∠DAE=∠D′AE,
在△ADE和△AD′E中,
,
∴△ADE≌△AD′E(SAS),
∴DE=D′E;
(2)∠DAE=
∠BAC.
理由如下:在△ADE和△AD′E中,
,
∴△ADE≌△AD′E(SSS),
∴∠DAE=∠D′AE,
∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,
∴∠DAE=
∠BAC;
(3)∵∠BAC=90°,AB=AC,
∴∠B=∠ACB=∠ACD′=45°,
∴∠D′CE=45°+45°=90°,
∵△D′EC是等腰直角三角形,
∴D′E=
CD′,
由(2)DE=D′E,
∵△ABD绕点A旋转得到△ACD′,
∴BD=C′D,
∴DE=
BD.
∴AD=AD′,∠CAD′=∠BAD,
∵∠BAC=120°,∠DAE=60°,
∴∠D′AE=∠CAD′+∠CAE,
=∠BAD+∠CAE,
=∠BAC-∠DAE,
=120°-60°,
=60°,
∴∠DAE=∠D′AE,
在△ADE和△AD′E中,
|
∴△ADE≌△AD′E(SAS),
∴DE=D′E;
(2)∠DAE=
| 1 |
| 2 |
理由如下:在△ADE和△AD′E中,
|
∴△ADE≌△AD′E(SSS),
∴∠DAE=∠D′AE,
∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,
∴∠DAE=
| 1 |
| 2 |
(3)∵∠BAC=90°,AB=AC,
∴∠B=∠ACB=∠ACD′=45°,
∴∠D′CE=45°+45°=90°,
∵△D′EC是等腰直角三角形,
∴D′E=
| 2 |
由(2)DE=D′E,
∵△ABD绕点A旋转得到△ACD′,
∴BD=C′D,
∴DE=
| 2 |
看了 已知△ABC中,AB=AC,...的网友还看了以下:
化简1/a-1+1/a(a-1)=?A 1/a+1 B a/a+1 C 1/a D a+1/a 2020-04-06 …
线性代数题:设A为n阶方阵,A*是A的伴随矩阵,如果/A/=a≠0,则/A*/=()设A为n阶方阵 2020-05-15 …
求逻辑学专家!一、某地发生命案,经分析,凶手是两人合谋.有初步确定A,B,C,D,E五人嫌疑犯,并 2020-05-16 …
关于穆哈默德(Muhammad)和伊斯兰教的历史..?1. A.D 570~ A.D 632 , 2020-05-17 …
1.已知0<a<(1/2),A=1-(a^2),B=1+(a^2),C=1/(1-a),D=1/( 2020-06-06 …
求证:1\a(a+d)+1\(a+d)(a+2d)+.+1\[a+(n-2)d][a+(n-1)d 2020-06-12 …
关于不等式的几个作业问题1、已知1>2a>0,试确定A=1-a^2,B=1+a^2,C=1/(1- 2020-07-16 …
求不定积分∫dx/(a^2+x^2)=∫1/(a^2)*1/[1+(x/a)^2]*dx=1/a∫ 2020-07-20 …
若函数y=f(x)的定义域是[0,1],则函数f(x+a)+f(2x+a)(0<a<1)的定义域是 2020-07-25 …
求∫(dx)/(ax+b)^n(a≠0,n≠1).这是书上的解法∫(dx)/(ax+b)^n=1/a 2020-11-01 …