早教吧 育儿知识 作业答案 考试题库 百科 知识分享

过抛物线y2=4x的焦点F作垂直于x轴的直线,交抛物线于A,B两点,则以F为圆心、AB为直径的圆的方程是.

题目详情
过抛物线y2=4x的焦点F作垂直于x轴的直线,交抛物线于A,B两点,则以F为圆心、AB为直径的圆的方程是 ______.
▼优质解答
答案和解析
∵y2=4x,
∴p=2,F(1,0),
把x=1代入抛物线方程求得y=±2
∴A(1,2),B(1,-2),
∴|AB|=2+2=4
∴所求圆的方程为(x-1)2+y2=4.
故答案为:(x-1)2+y2=4.