早教吧作业答案频道 -->数学-->
求数项级数∑(n=1)1/[n*(2n+1)*(2^n)]的和,解题过程中的问题:(1)怎样由所给定的数项级数想到幂级数∑(n=1)[x^(2n)]/[n*(2n+1)](2)当求出幂级数的收敛域为[-1,1],为什么设s(x)=x*∑(n=1)[x^(2n)]/[n*(2n+1)]
题目详情
求数项级数∑(n=1)1/[n*(2n+1)*(2^n)]的和,解题过程中的问题:
(1)怎样由所给定的数项级数想到幂级数∑(n=1)[x^(2n)]/[n*(2n+1)]
(2)当求出幂级数的收敛域为[-1,1],为什么设s(x)=x*∑(n=1)[x^(2n)]/[n*(2n+1)]
时,x的范围为(-1,1)
(3)∑(n=1)x^[2(n-1)]为什么等于1/[1-(x^2)]
(4)为什么当求出∫(0,x)s''(x)dx=∫(0,x)(2x)/[1-(x^2)]dx=-ln[1-(x^2)]时,不能直接得出s'(x)=-ln[1-(x^2)],还得说明一下因为s'(0)=0,才能得此结论
(1)怎样由所给定的数项级数想到幂级数∑(n=1)[x^(2n)]/[n*(2n+1)]
(2)当求出幂级数的收敛域为[-1,1],为什么设s(x)=x*∑(n=1)[x^(2n)]/[n*(2n+1)]
时,x的范围为(-1,1)
(3)∑(n=1)x^[2(n-1)]为什么等于1/[1-(x^2)]
(4)为什么当求出∫(0,x)s''(x)dx=∫(0,x)(2x)/[1-(x^2)]dx=-ln[1-(x^2)]时,不能直接得出s'(x)=-ln[1-(x^2)],还得说明一下因为s'(0)=0,才能得此结论
▼优质解答
答案和解析
1、通项中有2^n,与幂级数形式相同,因此将2换为x,即考虑某个幂级数在x=2的函数值.
2、幂级数与多项式类似,能无穷次求导.但要注意,设幂级数时尽量弄出求导后会变的简单的幂级数.本题中不乘以x,求导后系数更麻烦,乘以x后求导恰好能消掉2n+1.其实做多了后第一眼就知道应该设幂级数是x^(2n+1),而不是x^(2n).
3、等级级数的和.
4、Newton -Leibiniz公式:F(x)-F(a)=积分(从a到x)F'(t)dt.
没有F(a)的话,那做积分只能得到一个原函数,但积分得到的原函数是否与题目给的函数相同是不知道的,必须再要求在某一点的函数值相等才行.因此题目中应该是S'(x)-S'(0)=积分(从0到x)S''(t)dt.
2、幂级数与多项式类似,能无穷次求导.但要注意,设幂级数时尽量弄出求导后会变的简单的幂级数.本题中不乘以x,求导后系数更麻烦,乘以x后求导恰好能消掉2n+1.其实做多了后第一眼就知道应该设幂级数是x^(2n+1),而不是x^(2n).
3、等级级数的和.
4、Newton -Leibiniz公式:F(x)-F(a)=积分(从a到x)F'(t)dt.
没有F(a)的话,那做积分只能得到一个原函数,但积分得到的原函数是否与题目给的函数相同是不知道的,必须再要求在某一点的函数值相等才行.因此题目中应该是S'(x)-S'(0)=积分(从0到x)S''(t)dt.
看了 求数项级数∑(n=1)1/[...的网友还看了以下:
两道完全平方式的题,(1)如果x^2-(1/2)x+p是一个完全平方式求p(2)计算(x^2n-2) 2020-03-31 …
(-x)∧3×x∧2n-1+x∧2n×(-x)∧2(要过程) 2020-04-26 …
y=1+sinπx的周期~1+sinπ(X+2n)=1+sin(πX+2nπ)=1+sinπXco 2020-04-27 …
求数项级数∑(n=1)1/[n*(2n+1)*(2^n)]的和,解题过程中的问题:(1)怎样由所给 2020-06-03 …
简算:1.22*2×9-1.33*2×4分解因式:(A+B+C)*2-(A+B-C)*2(X+Y) 2020-06-24 …
已知f(x)是定义在自然数集N*上的函数,当x=2n-1(n属于N*)时,有f(x+1)-f(x) 2020-07-27 …
求幂函数的和函数∑(n=0→无穷)x^(2n+1)/(2n+1)能不能写下过程,今天刚学有点不大会 2020-07-29 …
一元多项式在复数域内分解成一次因式的乘积(1)x^n-C(2n,2)x^(n-1)+C(2n,4) 2020-08-03 …
求高次和差公式推导,重金酬谢x^n-y^n=(x-y)[x^(n-1)+x^(n-2)y+x^(n- 2020-10-31 …
编程:按下面的通项计算SIN(X)=X-X3/3!+X5/5!-X7/7!....直到最后一项绝对值 2020-10-31 …