早教吧作业答案频道 -->数学-->
观察下列各式:12+1−112+1=1−112+1=1−(1−12),22+2−122+2=1−122+2=1−(12−13),32+3−132+3=1−132+3=1−(13−14),…计算:12+522+2+1132+3+…+20112+2011−120112+2011=201012012201012012.
题目详情
|
…
计算:
1 |
2 |
5 |
22+2 |
11 |
32+3 |
20112+2011−1 |
20112+2011 |
2010
1 |
2012 |
2010
.1 |
2012 |
|
| ||||||||
| ||||||||
|
| ||||||||
| ||||||||
|
| ||||||||
| ||||||||
|
12+1−1 |
12+1 |
1 |
12+1 |
1 |
2 |
12+1−1 |
12+1 |
1 |
12+1 |
1 |
2 |
12+1−1 |
12+1 |
1 |
12+1 |
1 |
2 |
22+2−1 |
22+2 |
1 |
22+2 |
1 |
2 |
1 |
3 |
22+2−1 |
22+2 |
1 |
22+2 |
1 |
2 |
1 |
3 |
22+2−1 |
22+2 |
1 |
22+2 |
1 |
2 |
1 |
3 |
32+3−1 |
32+3 |
1 |
32+3 |
1 |
3 |
1 |
4 |
32+3−1 |
32+3 |
1 |
32+3 |
1 |
3 |
1 |
4 |
32+3−1 |
32+3 |
1 |
32+3 |
1 |
3 |
1 |
4 |
1 |
2 |
5 |
22+2 |
11 |
32+3 |
20112+2011−1 |
20112+2011 |
2010
1 |
2012 |
2010
.1 |
2012 |
1 |
2 |
5 |
22+2 |
11 |
32+3 |
20112+2011−1 |
20112+2011 |
2010
1 |
2012 |
1 |
2012 |
1 |
2012 |
2010
1 |
2012 |
1 |
2012 |
1 |
2012 |
▼优质解答
答案和解析
根据题意,12+522+2+1132+3+…+20112+2011−120112+2011=1-(1-12)+1-(12-13)+1-(13-14)+…+1-(12011-12012)=1×2011-1+12-12+13-13+14-…-12011+12012=2011-1+12012=201012012.故答案为:201012012....
看了 观察下列各式:12+1−11...的网友还看了以下:
简便计算1.(+1)+(-3)+(+5)+(-7)+…+(+97)+(-99)2.1/2+1/3+ 2020-04-07 …
1/1,-1/2,-2/1,1/3,2/2,1/3,-1/4,-2/3,-3/2,-4/1,1/5 2020-04-09 …
S=(1+1/1*2+(2+1/2*3)+(3+1/3*4)+...+(20+1/20*21)S= 2020-04-27 …
1/2{1/2[1/2(1/2y-3)-3]-3}=17x-1/0.024=1-0.2x/0.08 2020-04-27 …
1/2*101/100=101/200这一步是因为什么这么做的?原题是1-1/2^2)(1-1/3 2020-05-14 …
几道数学计算题(请写过程)第一题1/2+(1/3+2/3)+(1/4+2/4+3/4)+…+(1/ 2020-05-16 …
(1)1/1*2+1/2*3+.+1/2009*2010(2)1/2*4+1/4*6+.+1/20 2020-05-17 …
1.求数列11,103,1005,10007.前n项和2.求数列1/1.5,1/3.7,1/5.9 2020-06-12 …
求一道预备班数学期中考试的答案小明在做题时发现了一个规律:1*2/1=1-2/1,2*3/1=2/1 2020-11-05 …
几道见得的算数问题,求解(1^2+2^2)/1*2+(2^2+3^2)/2*3+...+(18^2+ 2020-11-06 …