早教吧作业答案频道 -->其他-->
在Rt△ABC中,AD为斜边BC上的高,P是AB上的点,过A点作PC的垂线交过B所作AB的垂线于Q点.求证:PD丄QD.
题目详情
在Rt△ABC中,AD为斜边BC上的高,P是AB上的点,过A点作PC的垂线交过B所作AB的垂线于Q点.求证:PD丄QD.
▼优质解答
答案和解析
证明:如图,设AQ交CP于E点,连ED,EB,PQ,
∵AD为斜边BC上的高,AE⊥CP,
∴Rt△ACD∽Rt△BCA,Rt△ACE∽Rt△PCA,
∴AC2=CD•CB,AC2=CE•CP,
∴CD•CB=CE•CP,
∴△CDE∽△CPB,
∴∠CED=∠CBP,
∴B,D,E,P四点共圆,
∴∠1=∠5+∠6,∠5=∠4,
又∵BQ⊥AB,
∴∠QEP=∠PBQ=90°,
∴B,Q,E,P四点共圆,
∴∠1=∠2+∠3,∠2=∠4,
∴∠3=∠6,
∴D,Q,B,P四点共圆,
而∠PBQ=90°,
∴∠PDQ=90°,
即PD⊥DQ.

∵AD为斜边BC上的高,AE⊥CP,
∴Rt△ACD∽Rt△BCA,Rt△ACE∽Rt△PCA,
∴AC2=CD•CB,AC2=CE•CP,
∴CD•CB=CE•CP,
∴△CDE∽△CPB,
∴∠CED=∠CBP,
∴B,D,E,P四点共圆,
∴∠1=∠5+∠6,∠5=∠4,
又∵BQ⊥AB,
∴∠QEP=∠PBQ=90°,
∴B,Q,E,P四点共圆,
∴∠1=∠2+∠3,∠2=∠4,
∴∠3=∠6,
∴D,Q,B,P四点共圆,
而∠PBQ=90°,
∴∠PDQ=90°,
即PD⊥DQ.
看了 在Rt△ABC中,AD为斜边...的网友还看了以下:
已知弧长和弦长求半径弧长a,弦长b,求半径r,圆心角n?公式12πr*n/360=an=360a/ 2020-05-13 …
A.πA,B,C (σB=B(R×S))B.πR.A,R.B,R.C (σR.B=S.B (R×S) 2020-05-26 …
大圆半径为R,小圆半径为r,两个同心圆构成一个环形,以圆心O为顶点,再以O为顶点,以r为边长作一个 2020-06-03 …
(2002•广西)当分子的距离D=R时,分子间的引力=斥力下列说法正确的是A、D>R引力起主要作用 2020-06-16 …
设等边三角形的内切圆半径为r,外接圆半径为R,边长为a,则r:R:a=1:2:231:2:23. 2020-07-19 …
正六边形的边长a,半径R,边心距r的比a:R:r=2:2:32:2:3. 2020-07-26 …
设三角形ABC的三边长分别是a,b,c,三角形ABC的面积为S,内切圆的半径r=2S/a+b+c, 2020-07-31 …
三正多边形的中心、半径、中心角、弦心距、边长之间的关系如图:请指出圆内接正六边形的中心、半径、中心 2020-08-01 …
勾股定理的证明这样可以不我们同学像这样证明做一直角三角形直角边为a,b,斜边为c,在做其内切圆,做 2020-08-02 …
已知的三边长分别为a,b,c,其面积为S,则△ABC的内切圆eO的半径r=2S/a+b+c.这是一 2020-08-02 …