早教吧作业答案频道 -->数学-->
有约束条件的极值讨论问题设f(x,y)与Q(x,y)均为可微函数,且Q偏y的导函数不等于0,已知(x0,y0)是f(x,y)在约束条件Q(x,y)=0下的一个极值点,为什么f(x0,y0)对X的偏导数不等于0,
题目详情
有约束条件的极值讨论问题
设f(x,y)与Q(x,y)均为可微函数,且Q偏y的导函数不等于0,已知(x0,y0)是f(x,y)在约束条件Q(x,y)=0下的一个极值点,为什么f(x0,y0)对X的偏导数不等于0,
设f(x,y)与Q(x,y)均为可微函数,且Q偏y的导函数不等于0,已知(x0,y0)是f(x,y)在约束条件Q(x,y)=0下的一个极值点,为什么f(x0,y0)对X的偏导数不等于0,
▼优质解答
答案和解析
f对x的导数为零说明无论x如何变化,对f的值是没有影响的.换句话说,优化的时候咱不关心x究竟取多少,这导致了一个结果,什么结果呢,y几乎可以任意取值,因为任给一个y我都可以找到一个x来让约束条件成立,只要这个x存在,而x对我们的目标函数f没有影响,那么这个问题就变成任意取一个y值再寻找f是否有极值的问题了,约束已经不存在了,可是请问当约束都不存在的时候,极值一定存在吗?很多时候是不存在的,好比当你有无限的金钱的时候,没必要考虑如何花销效果最好一样.
看了 有约束条件的极值讨论问题设f...的网友还看了以下:
判断.如果f(x)在x0处可导,则|f(x)|在x0处必可导.f''(x0)=[f(x0)]''函 2020-04-27 …
如果一元函数f(x0,y)在y0处连续,f(x,y0)在x0处连续,那么二元函数f(x,y)在点( 2020-05-21 …
高一一小题⑴求函数y=f(x)在x0处导数的步骤:①求函数的增量Δy=f(x0+Δx)-f(x0) 2020-06-10 …
设函数f(x,y)在点P(x0,y0)的两个偏导数fx′和fy′都存在,则()A.f(x,y)在点 2020-07-08 …
如果函数f(x,y)于带域α≤x≤β上连续且关于y满足利普希茨条件,则方程dy/dx=f(x,y) 2020-07-14 …
导数的定义△y/△x=f(x0+△x)-f(x0)/△x,当△x趋于零的时候,会无限趋近于常数A. 2020-07-29 …
求曲线y=x^2在点(1,1)处的法线方程!法线方程为y-y0=-(x-x0)/f'(x0)知道这 2020-07-31 …
导函数定义如何理解导函数定义设函数y=f(x)在点x0的某个邻域N(x0,δ)内有定义,当自变量x 2020-07-31 …
全微分方程通解到底是∫上x下x0P(x,y0)dx+∫上y下y0Q(x,y)dy还是∫上x下x0P( 2020-11-01 …
在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都不小于x0点的函数值,称为函数 2020-12-08 …