早教吧作业答案频道 -->数学-->
如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)①当M点在何处时,AM+CM
题目详情
如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.

(1)求证:△AMB≌△ENB;
(2)①当M点在何处时,AM+CM的值最小;
②当M点在何处时,AM+BM+CM的值最小,并说明理由;
(3)当AM+BM+CM的最小值为
+1时,求正方形的边长.

(1)求证:△AMB≌△ENB;
(2)①当M点在何处时,AM+CM的值最小;
②当M点在何处时,AM+BM+CM的值最小,并说明理由;
(3)当AM+BM+CM的最小值为
| 3 |
▼优质解答
答案和解析
(1)证明:∵△ABE是等边三角形,
∴BA=BE,∠ABE=60°.
∵∠MBN=60°,
∴∠MBN-∠ABN=∠ABE-∠ABN.
即∠MBA=∠NBE.
又∵MB=NB,
∴△AMB≌△ENB(SAS).
(2) ①当M点落在BD的中点时,A、M、C三点共线,AM+CM的值最小.
②如图,连接CE,当M点位于BD与CE的交点处时,
AM+BM+CM的值最小.
理由如下:连接MN,由(1)知,△AMB≌△ENB,
∴AM=EN,
∵∠MBN=60°,MB=NB,
∴△BMN是等边三角形.
∴BM=MN.
∴AM+BM+CM=EN+MN+CM.
根据“两点之间线段最短”,得EN+MN+CM=EC最短
∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长.
(3) 过E点作EF⊥BC交CB的延长线于F,
∴∠EBF=∠ABF-∠ABE=90°-60°=30°.
设正方形的边长为x,则BF=
x,EF=
.
在Rt△EFC中,
∵EF2+FC2=EC2,
∴(
)2+(
x+x)2=(
+1)2.
解得,x1=
,x2=-
(舍去负值).
∴正方形的边长为
.
(1)证明:∵△ABE是等边三角形,∴BA=BE,∠ABE=60°.
∵∠MBN=60°,
∴∠MBN-∠ABN=∠ABE-∠ABN.
即∠MBA=∠NBE.
又∵MB=NB,
∴△AMB≌△ENB(SAS).
(2) ①当M点落在BD的中点时,A、M、C三点共线,AM+CM的值最小.
②如图,连接CE,当M点位于BD与CE的交点处时,
AM+BM+CM的值最小.
理由如下:连接MN,由(1)知,△AMB≌△ENB,
∴AM=EN,
∵∠MBN=60°,MB=NB,
∴△BMN是等边三角形.
∴BM=MN.
∴AM+BM+CM=EN+MN+CM.
根据“两点之间线段最短”,得EN+MN+CM=EC最短
∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长.
(3) 过E点作EF⊥BC交CB的延长线于F,

∴∠EBF=∠ABF-∠ABE=90°-60°=30°.
设正方形的边长为x,则BF=
| ||
| 2 |
| x |
| 2 |
在Rt△EFC中,
∵EF2+FC2=EC2,
∴(
| x |
| 2 |
| ||
| 2 |
| 3 |
解得,x1=
| 2 |
| 2 |
∴正方形的边长为
| 2 |
看了 如图,四边形ABCD是正方形...的网友还看了以下:
物理圆周运动里关于时钟的题目一个时钟,秒针转动的角速度是多少?(rad/s)分针的转速多少?(r/ 2020-06-23 …
对任意两个正整数m,n,定义某种运算(用○×表示运算符号):当m,n都是正偶数或都是正奇数时,m○ 2020-07-30 …
如图,已知抛物线y1=-x2+1,直线y2=-x+1,当x任取一值时,x对应的函数值分别为y1,y 2020-08-01 …
在输液时,药液有时会从针口流出体外,为了及时发现,设计了一种报警装置,电路如图所示.M是贴在针口处的 2020-11-04 …
在输液时,药液有时会从针口流出体外,为了及时发现,设计了一种报警装置,电路如图所示.M是贴在针口处的 2020-11-04 …
在输液时,药液有时会从针口流出体外,为了及时发现,设计了一种报警装置,电路如图所示.M是贴在针口处的 2020-11-04 …
诗歌讲座持续了2小时m分钟,结束时钟表的时针和分针的位置刚好跟开讲时的位置对调,若用[x]表示小数x 2020-11-04 …
1.当x=()时,1-|x+1|有最大值,这个最大值是2.用“☆“定义新运算;对于任意实数a、b,都 2020-11-24 …
也不是很深奥,就是想请大家找一下时钟的规律:当时间是m时n分的时候,分针与时针的夹角是多少度?找下规 2020-12-29 …
用“三角形”定义新运算,对于任意实数a,b,有a*三角.用“三角形”定义新运算,对于任意实数a,b, 2021-01-20 …