早教吧作业答案频道 -->数学-->
a=(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^61+1),则a-1996的应该是:a=(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1),则a-1996的末位数字....
题目详情
a=(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^61+1),则a-1996的
应该是:a=(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1),则a-1996的末位数字....
应该是:a=(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1),则a-1996的末位数字....
▼优质解答
答案和解析
给a乘以一个1,a不变,而1=2-1,故可以连续使用平方差公式.
a=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)
=(2^8-1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)
…
=2^128-1
而2^1=2,2^2=4,2^3=8,2^4=16,2^5=32,2^6=64,2^7=128,2^8=256……
可知2^n的个位每隔四项重复出现,依次是2、4、8、6,周期为四.
128÷4=32,能够被整除,是第32个周期的结束.
所以2^128的个位是6
所以a=2^128-1的个位是5
所以a-1996的个位是9
a=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)
=(2^8-1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)
…
=2^128-1
而2^1=2,2^2=4,2^3=8,2^4=16,2^5=32,2^6=64,2^7=128,2^8=256……
可知2^n的个位每隔四项重复出现,依次是2、4、8、6,周期为四.
128÷4=32,能够被整除,是第32个周期的结束.
所以2^128的个位是6
所以a=2^128-1的个位是5
所以a-1996的个位是9
看了 a=(2+1)(2^2+1)...的网友还看了以下:
1/2{1/2[1/2(1/2y-3)-3]-3}=17x-1/0.024=1-0.2x/0.08 2020-04-27 …
(1)1/1*2+1/2*3+.+1/2009*2010(2)1/2*4+1/4*6+.+1/20 2020-05-17 …
已知角α终边经过P(1/2,根号3/2),则cosα=()sinα=()tanα=()cotα=( 2020-06-13 …
若[X]表示不超过X的最大整数(如[兀]=3,[-2又3份之2]=-3等),则[1/2-√1*2] 2020-07-14 …
(1/2+1/3+1/4+...1/2013)X(1+1/2+1/3+1/4+...1/2012) 2020-07-14 …
设R^3中的一组基ξ1=(1,-2,1)T,ξ2=(0,1,1)T,ξ3=(3,2,1)T,向量α在 2020-11-02 …
1/1*2+1/2*3+1/3*4+..+1/8*9+1/9*10=()1+2-3-4+5+6-7- 2020-11-03 …
求一道预备班数学期中考试的答案小明在做题时发现了一个规律:1*2/1=1-2/1,2*3/1=2/1 2020-11-05 …
观察下列等式①1/√2+1=√2-1/(√2+1)(√2-1)=-1+√2②1/√3+√2=√3-√ 2020-12-07 …
高中数学抽象函数已知定义在(-1,1)上的函数f(x)满足f(1/2)=1,且对任意x,y∈(-1, 2020-12-08 …