早教吧作业答案频道 -->数学-->
已知函数f(x)=x2-2ax-2alnx,g(x)=ln2x+2a2,其中x>0,a属于R,若f(x)在区间(2,正无穷上单调递增求a的取值范围
题目详情
已知函数f(x)=x2-2ax-2alnx,g(x)=ln2x+2a2,其中x>0,a属于R,若f(x)在区间(2,正无穷上单调递增
求a的取值范围
求a的取值范围
▼优质解答
答案和解析
答:
f(x)=x^2-2ax-2alnx,x>0
求导:
f'(x)=2x-2a-2a/x
f(x)在x>2时是单调递增函数
所以:x>=2时,f'(x)=2x-2a-2a/x>=0恒成立
所以:
x^2-(x+1)a>=0
(x+1)a<=x^2
a<=(x^2)/(x+1)
=[(x+1-1)^2]/(x+1)
=[(x+1)^2-2(x+1)+1]/(x+1)
=(x+1)+1/(x+1)-2
因为:x>=2,x+1>=3
所以:(x+1)+1/(x+1)>=2√[(x+1)*1/(x+1)]=2
当且仅当x+1=1/(x+1)即x+1=1即x=0时取得最小值2
所以:x+1>1时(x+1)+1/(x+1)是单调递增函数
所以:x+1=3时取得最小值(x+1)+1/(x+1)=3+1/3=10/3
所以:(x+1)+1/(x+1)-2>=10/3-2=4/3>=a
综上所述,a<=4/3
f(x)=x^2-2ax-2alnx,x>0
求导:
f'(x)=2x-2a-2a/x
f(x)在x>2时是单调递增函数
所以:x>=2时,f'(x)=2x-2a-2a/x>=0恒成立
所以:
x^2-(x+1)a>=0
(x+1)a<=x^2
a<=(x^2)/(x+1)
=[(x+1-1)^2]/(x+1)
=[(x+1)^2-2(x+1)+1]/(x+1)
=(x+1)+1/(x+1)-2
因为:x>=2,x+1>=3
所以:(x+1)+1/(x+1)>=2√[(x+1)*1/(x+1)]=2
当且仅当x+1=1/(x+1)即x+1=1即x=0时取得最小值2
所以:x+1>1时(x+1)+1/(x+1)是单调递增函数
所以:x+1=3时取得最小值(x+1)+1/(x+1)=3+1/3=10/3
所以:(x+1)+1/(x+1)-2>=10/3-2=4/3>=a
综上所述,a<=4/3
看了 已知函数f(x)=x2-2a...的网友还看了以下:
f(x)是R上的函数,若f(x+1)和f(x-1)都是奇函数,则下列判断正确的是1、f(x)是偶函 2020-06-08 …
已知函数fx是定义在r上的奇函数f(1)=0,xf'(x)-f(x)/x^2>0则f(x)>0的解 2020-06-08 …
如果存在正实数a,使得f(x-a)为奇函数,f(x+a)为偶函数,我们称函数f(x)为亲和函数,则 2020-06-09 …
已知函数F(X)在R上可导,其导函数为F(X),若F(X)满足:(x-1)[f'(x)-F(X)] 2020-06-12 …
已知函数f(x)是定义在(负无穷正无穷)上的函数,且对任意实数XY都满足f(x+y)=f(x已知函 2020-06-14 …
已知函数f(x)=1/a-1/x(a>0,x>0).(1)求证:f(x)在(0,正无穷)上是单调递 2020-06-14 …
抽象函数模型函数证明为什么百科中只给出了f(xy)=f(x)f(y)具体化为幂函数的证明幂函数:f 2020-07-19 …
函数-已知函数f(x)=2mx22(4-m)x+1,g(x)=mx①若函数f(x)在x属于函数-已 2020-07-27 …
已知函数f(x)定义在(0,正无穷大)上的函数,且对任意的x,y属于(0,正无穷大),有f(xy)= 2020-12-08 …
已知函数y=f(x)是定义在0到正无穷上的减函数,且满足f(x.y)=f(x)+f(y),f(2\1 2020-12-08 …