早教吧作业答案频道 -->数学-->
设事件A,B,C两辆独立,且满足ABC=空集,及P(A)=P(B)=P(C)=x,求max(x)
题目详情
设事件A,B,C两辆独立,且满足ABC=空集,及P(A)=P(B)=P(C)=x,求max(x)
▼优质解答
答案和解析
x最大值为1/2
分析:
x值要保证所有的由A、B、C交或并得到的集合的概率测度在0到1之间.
先考虑A∪B∪C:
P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(CA)+P(ABC)
因为ABC=空集,则P(ABC)=0
而A、B、C两两之间相互独立,则P(AB)=P(A)P(B) P(BC)=P(B)P(C)
P(CA)=P(C)P(A)
所以有: P(A∪B∪C)=3x-3x²
而0≤P(A∪B∪C)≤1
则0≤3x-3x²≤1
左边不等式解得:0≤x≤1
右边不等式解得:x∈R
则0≤x≤1
其次考虑A∪B:
P(A∪B)=P(A)+P(B)-P(AB)=2x-x²
则0≤2x-x²≤1
解得:0≤x≤1/2
同理考虑B∪C、C∪A得到的结果一样
再考虑A∪BC:
P(A∪BC)=P(A)+P(BC)-P(ABC)=x+x²
则0≤x+x²≤1
解得:0≤x≤(-1+√5)/2
同理考虑B∪AC、C∪AB得到的结果一样
最后考虑ABC、AB、BC、CA,对x无要求
综上所述:0≤x≤1/2
则 max(x)=1/2
(说明:还可以考虑具有包含关系的集合的概率测度大小,但计算后发现对结果没有影响,这里就不写上去了)
分析:
x值要保证所有的由A、B、C交或并得到的集合的概率测度在0到1之间.
先考虑A∪B∪C:
P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(CA)+P(ABC)
因为ABC=空集,则P(ABC)=0
而A、B、C两两之间相互独立,则P(AB)=P(A)P(B) P(BC)=P(B)P(C)
P(CA)=P(C)P(A)
所以有: P(A∪B∪C)=3x-3x²
而0≤P(A∪B∪C)≤1
则0≤3x-3x²≤1
左边不等式解得:0≤x≤1
右边不等式解得:x∈R
则0≤x≤1
其次考虑A∪B:
P(A∪B)=P(A)+P(B)-P(AB)=2x-x²
则0≤2x-x²≤1
解得:0≤x≤1/2
同理考虑B∪C、C∪A得到的结果一样
再考虑A∪BC:
P(A∪BC)=P(A)+P(BC)-P(ABC)=x+x²
则0≤x+x²≤1
解得:0≤x≤(-1+√5)/2
同理考虑B∪AC、C∪AB得到的结果一样
最后考虑ABC、AB、BC、CA,对x无要求
综上所述:0≤x≤1/2
则 max(x)=1/2
(说明:还可以考虑具有包含关系的集合的概率测度大小,但计算后发现对结果没有影响,这里就不写上去了)
看了 设事件A,B,C两辆独立,且...的网友还看了以下:
如果事件A,B满足.ACB则必有a.P(A)<P(B)b.P(A)>P(B)c.P(A)≤P(B) 2020-04-07 …
设A与B互为对立事件,且P(A)>0,P(B)>0,则下列各式中错误的是( )A.P(A)=1-P 2020-05-16 …
设P(A)=a,P(B)=b.如果AB不相容,求P(AUB)=如果AB相互独立.求P(AUB)=如 2020-06-12 …
设A,B为任意两个事件且A⊂B,P(B)>0,则下列选项必然成立的是()A.P(A)<P(A|B) 2020-06-18 …
下列式子成立的是()A.P(A|B)=P(B|A)B.0<P(B|A)<1C.P(AB)=P(A) 2020-07-15 …
“若随机事件A,B相互独立,则P(A∩B)=P(A)P(B)”的逆否命题是()A.“若随机事件A, 2020-08-01 …
P(A+B)=P(A)+P(B)P(A+B)=P(AUB)这个好像不是等式公式是这个P(AUB)=P 2020-11-15 …
概率论中,若事件A,B相互独立,则P(A-B)=0,P(B-A)=P(B)-P(A).这是怎么证的? 2020-12-01 …
设随机事件A,B的对立事件为.A,.B,且P(A)P(B)≠0,则下列说法错误的是()A.若A和B独 2020-12-01 …
P(A+B)=P(A)+P(B)-P(A*B)吗?P(A+B)=P(A)+P(B)P(AUB)=P( 2020-12-01 …