早教吧作业答案频道 -->其他-->
设矩阵A是正定矩阵,证明A的平方也是正定矩阵一道证明题···
题目详情
设矩阵A是正定矩阵,证明A的平方也是正定矩阵
一道证明题···
一道证明题···
▼优质解答
答案和解析
正定矩阵的性质:
设M是n阶实系数对称矩阵,如果对任何非零向量X=(x_1,...x_n) ,都有 XMX′>0,就称M正定(Positive Definite).
因为A正定,因此,对任何非零向量X=(x_1,...x_n) ,XAX′>0.
设X′X=k,显然k>0(X′X每个元素都是平方项)
则XAAX′=(XAX′)(XAX′)/k>0
那么A^2是正定矩阵.
设M是n阶实系数对称矩阵,如果对任何非零向量X=(x_1,...x_n) ,都有 XMX′>0,就称M正定(Positive Definite).
因为A正定,因此,对任何非零向量X=(x_1,...x_n) ,XAX′>0.
设X′X=k,显然k>0(X′X每个元素都是平方项)
则XAAX′=(XAX′)(XAX′)/k>0
那么A^2是正定矩阵.
看了 设矩阵A是正定矩阵,证明A的...的网友还看了以下:
如果实方阵a满足aat=ata=i 则称a为正交矩阵 设a b为同阶正交矩阵 证明:at是正交矩阵 2020-04-05 …
设矩阵A是正定矩阵,证明A的平方也是正定矩阵一道证明题··· 2020-04-06 …
(1)A、B均为n阶实对称正定矩阵,证明A-B正定则B^(-1)-A^(-1)亦正定(2)A、(1 2020-05-13 …
高等代数的证明题设A是实数域上的n级可逆矩阵,证明:A可以分解成A=TB,其中T是正交矩阵,B是上 2020-05-13 …
正交阵证明问题设A为n阶矩阵,证明A为正交阵的充要条件是A的伴随阵为正交阵 2020-05-14 …
一道高等代数关于迹Tr的问题(1)证明,若一复方阵的所有特征值全为0,则A为幂零矩阵;(2)证明对 2020-06-19 …
线性代数,瑞利原理如果B为正定矩阵,利用瑞利原理证明:矩阵A+B之最小特征值大于矩阵A的最小特征值 2020-07-13 …
请教一道关于群的基础证明题,相信学过的一定会做~考虑形如1**1*1的实3×3矩阵的集合Ua)证明 2020-07-14 …
矩阵·,挑战看看呗~1.证明:若AB=0且A可逆,则B=02.证明:AX=AY且A可逆,则X=Y3 2020-07-15 …
矩阵证明题,A为n阶可逆实矩阵,证明存在正交矩阵Q和正定矩阵S,使得A=QS. 2020-08-01 …