早教吧作业答案频道 -->数学-->
△ABC的三个内角A B C的对边分别为a b c,asinAsinB+bcos^2A=根号下2a 若c2=b2+根号3*a2,求B最好给出最后求出B的数值 因为我实在是求不出来。我求的是根号下(4分之根号下3再+1)
题目详情
△ABC的三个内角A B C的对边分别为a b c,asinAsinB+bcos^2A=根号下2a 若c2=b2+根号3*a2,求B
最好给出最后求出B的数值 因为我实在是求不出来。我求的是根号下(4分之根号下3再+1)
最好给出最后求出B的数值 因为我实在是求不出来。我求的是根号下(4分之根号下3再+1)
▼优质解答
答案和解析
△ABC的三个内角A B C的对边分别为a b c,asinAsinB+bcos²A=(√2)a,若c²=b²+(√3)a²,求B
asinAsinB+bcos²A=asinAsinB+b(1-sin²A)=sinA(asinB-bsinA)+b=(√2)a
由正弦定理可知:a=2RsinA,b=2RsinB,代入上式得:
(√2)a-b=sinA(2RsinAsinB-2RsinBsinA)=0,故a/b=1/√2=√2/2;
由余弦定理得c²=a²+b²-2abcosC=b²+(√3)a²
于是得(1-√3)a²-2abcosC=0,cosC=[(1-√3)/2](a/b)=[(1-√3)/2](√2/2)=(√2/2)(1/2)-(√2/2)(√3/2)
=cos45°cos60°-sin45°sin60°=cos(45°+60°)=coa105°,故C=105°;
于是sinC=sin105°=sin(45°+60°)=sin45°cos60°+cos45°sin60°=(√2/4)(1+√3)
将a=(√2)b/2代入c²=b²+(√3)a²=b²+(√3)(b²/2)=[(2+√3)/2]b²
∴b/c=√[2/(2+√3)]=√[2(2-√3)]
sinB=(b/c)sinC=√[2(2-√3)][(√2/4)(1+√3)]=[√(2-√3)](1+√3)]/2=√[4-2√3)/2](1+√3)/2
=√[√3-1)²/2](1+√3)/2=(√3-1)(1+√3)/2√2=2/2√2=1/√2=√2/2
∴B=45°(因为前面已求出C=105°,故B不可能再是钝角.)
asinAsinB+bcos²A=asinAsinB+b(1-sin²A)=sinA(asinB-bsinA)+b=(√2)a
由正弦定理可知:a=2RsinA,b=2RsinB,代入上式得:
(√2)a-b=sinA(2RsinAsinB-2RsinBsinA)=0,故a/b=1/√2=√2/2;
由余弦定理得c²=a²+b²-2abcosC=b²+(√3)a²
于是得(1-√3)a²-2abcosC=0,cosC=[(1-√3)/2](a/b)=[(1-√3)/2](√2/2)=(√2/2)(1/2)-(√2/2)(√3/2)
=cos45°cos60°-sin45°sin60°=cos(45°+60°)=coa105°,故C=105°;
于是sinC=sin105°=sin(45°+60°)=sin45°cos60°+cos45°sin60°=(√2/4)(1+√3)
将a=(√2)b/2代入c²=b²+(√3)a²=b²+(√3)(b²/2)=[(2+√3)/2]b²
∴b/c=√[2/(2+√3)]=√[2(2-√3)]
sinB=(b/c)sinC=√[2(2-√3)][(√2/4)(1+√3)]=[√(2-√3)](1+√3)]/2=√[4-2√3)/2](1+√3)/2
=√[√3-1)²/2](1+√3)/2=(√3-1)(1+√3)/2√2=2/2√2=1/√2=√2/2
∴B=45°(因为前面已求出C=105°,故B不可能再是钝角.)
看了 △ABC的三个内角A B C...的网友还看了以下:
(根号3+4根号2)÷根号3分之1 2020-05-21 …
1、下列计算正确的是()A.+根号-8=-2根号2B.根号4/3-根号3/4=根号3/6 2020-06-13 …
简便算式(4+根号3+4-根号3)的2013方的平方根 2020-07-09 …
帮我解:1/2(根号2+根号3)-3/4(根号2+根号27); 2020-07-24 …
已知双曲线过P(-2,2/3*根号5)Q(3/4*根号7,4)两点,求双曲线的方程2/3*根号5就 2020-07-26 …
求y=﹙√﹙x-3﹚²+4﹚+﹙√﹙x+1﹚²+9﹚的最小值(就是根号下(x-3)²+4+根号下( 2020-07-26 …
(根3)/4*(根号(4/3)-2根3)-根2(根(1/2)-根8)= 2020-07-30 …
1:已知双曲线上的两点P1(3,-4根号2),P2(9/4,5),求双曲线的标准方程;2:双曲线的 2020-07-30 …
合并同类项:2根号3+4根号3+2根号152根号3+4根号3+2根号152根号15要不要拆成2根号3 2020-11-28 …
直线y=-根号3+4根号3与x轴相交于点A,与直线y=根号3/3x相交于点P.1.求点P的坐标2.求 2020-12-15 …