早教吧作业答案频道 -->数学-->
△ABC的三个内角A B C的对边分别为a b c,asinAsinB+bcos^2A=根号下2a 若c2=b2+根号3*a2,求B最好给出最后求出B的数值 因为我实在是求不出来。我求的是根号下(4分之根号下3再+1)
题目详情
△ABC的三个内角A B C的对边分别为a b c,asinAsinB+bcos^2A=根号下2a 若c2=b2+根号3*a2,求B
最好给出最后求出B的数值 因为我实在是求不出来。我求的是根号下(4分之根号下3再+1)
最好给出最后求出B的数值 因为我实在是求不出来。我求的是根号下(4分之根号下3再+1)
▼优质解答
答案和解析
△ABC的三个内角A B C的对边分别为a b c,asinAsinB+bcos²A=(√2)a,若c²=b²+(√3)a²,求B
asinAsinB+bcos²A=asinAsinB+b(1-sin²A)=sinA(asinB-bsinA)+b=(√2)a
由正弦定理可知:a=2RsinA,b=2RsinB,代入上式得:
(√2)a-b=sinA(2RsinAsinB-2RsinBsinA)=0,故a/b=1/√2=√2/2;
由余弦定理得c²=a²+b²-2abcosC=b²+(√3)a²
于是得(1-√3)a²-2abcosC=0,cosC=[(1-√3)/2](a/b)=[(1-√3)/2](√2/2)=(√2/2)(1/2)-(√2/2)(√3/2)
=cos45°cos60°-sin45°sin60°=cos(45°+60°)=coa105°,故C=105°;
于是sinC=sin105°=sin(45°+60°)=sin45°cos60°+cos45°sin60°=(√2/4)(1+√3)
将a=(√2)b/2代入c²=b²+(√3)a²=b²+(√3)(b²/2)=[(2+√3)/2]b²
∴b/c=√[2/(2+√3)]=√[2(2-√3)]
sinB=(b/c)sinC=√[2(2-√3)][(√2/4)(1+√3)]=[√(2-√3)](1+√3)]/2=√[4-2√3)/2](1+√3)/2
=√[√3-1)²/2](1+√3)/2=(√3-1)(1+√3)/2√2=2/2√2=1/√2=√2/2
∴B=45°(因为前面已求出C=105°,故B不可能再是钝角.)
asinAsinB+bcos²A=asinAsinB+b(1-sin²A)=sinA(asinB-bsinA)+b=(√2)a
由正弦定理可知:a=2RsinA,b=2RsinB,代入上式得:
(√2)a-b=sinA(2RsinAsinB-2RsinBsinA)=0,故a/b=1/√2=√2/2;
由余弦定理得c²=a²+b²-2abcosC=b²+(√3)a²
于是得(1-√3)a²-2abcosC=0,cosC=[(1-√3)/2](a/b)=[(1-√3)/2](√2/2)=(√2/2)(1/2)-(√2/2)(√3/2)
=cos45°cos60°-sin45°sin60°=cos(45°+60°)=coa105°,故C=105°;
于是sinC=sin105°=sin(45°+60°)=sin45°cos60°+cos45°sin60°=(√2/4)(1+√3)
将a=(√2)b/2代入c²=b²+(√3)a²=b²+(√3)(b²/2)=[(2+√3)/2]b²
∴b/c=√[2/(2+√3)]=√[2(2-√3)]
sinB=(b/c)sinC=√[2(2-√3)][(√2/4)(1+√3)]=[√(2-√3)](1+√3)]/2=√[4-2√3)/2](1+√3)/2
=√[√3-1)²/2](1+√3)/2=(√3-1)(1+√3)/2√2=2/2√2=1/√2=√2/2
∴B=45°(因为前面已求出C=105°,故B不可能再是钝角.)
看了 △ABC的三个内角A B C...的网友还看了以下:
关于高二不等式设00,a、b为常数,a^2/x+b^2/(1-x)的最小值是我知道可以用柯西不等式 2020-04-26 …
a大于0 b大于0且2a^2+b^2=3 求 2a根号下1+b^2最大值 2020-05-16 …
已知圆x^2+y^2+4x+2by+b^2=0与x轴相切,求b的值x+2)2+(y+b)2=4,可 2020-06-30 …
因式分解若a+b+c=0,则a^3+a^2c-abc+b^2c+b^2最好在百度hi上聊,时间:星 2020-07-06 …
1/a-b与1/a^2-b^2最简公分母 2020-08-01 …
a.b.c是正数求函数y=根号下(x^2+a^2)+根号下[(c-x)^2+b^2]最小值书上说用 2020-08-02 …
已知2个一维数组:a[],把数组a与数组b对应的元素乘积再赋值给数组b,已知2个一维数组:a[]= 2020-08-03 …
------高一数学不等式若正数XY满足X+Y=2求M=1/X+4/Y的最小值若正数XY满足1/X+ 2020-11-24 …
用以下三种水:1蒸馏水,2河水,3稻田中的水分别培养同样大小的番茄幼苗,一段时间后,幼苗的高度可能是 2020-12-08 …
一道较难的最值问题设a,b都是实数,且a^2-b^2+a-(5/2)b-3=0,试求a^2+b^2的 2020-12-22 …