早教吧作业答案频道 -->数学-->
已知集合M={a,b,c},N={-1,0,1},映射f:M到N,满足f(a)+f(b)=f(c),求映射个数
题目详情
已知集合M={a,b,c},N={-1,0,1},映射f:M到N,满足f(a)+f(b)=f(c),求映射个数
▼优质解答
答案和解析
考察f(c),
f(c)有三种取值,根据三种取值来分类讨论:
①f(c)=-1
此时,f(a)=-1,f(b)=0;或者f(a)=0,f(b)=-1
所以有两种映射:
f(a)=-1,f(b)=0,f(c)=-1;
f(a)=0,f(b)=-1,f(c)=-1;
②f(c)=0
此时,f(a)=-1,f(b)=1;或者f(a)=0,f(b)=0;或者f(a)=1,f(b)=-1
所以有三种映射:
f(a)=-1,f(b)=1,f(c)=0;
f(a)=0,f(b)=0,f(c)=0;
f(a)=1,f(b)=-1,f(c)=0;
③f(c)=1
此时,f(a)=0,f(b)=1;或者f(a)=1,f(b)=0
所以有两种映射:
f(a)=0,f(b)=1,f(c)=1;
f(a)=1,f(b)=0,f(c)=1;
所以,满足要求的映射有2+3+2=7(个)
你有问题也可以在这里向我提问:
f(c)有三种取值,根据三种取值来分类讨论:
①f(c)=-1
此时,f(a)=-1,f(b)=0;或者f(a)=0,f(b)=-1
所以有两种映射:
f(a)=-1,f(b)=0,f(c)=-1;
f(a)=0,f(b)=-1,f(c)=-1;
②f(c)=0
此时,f(a)=-1,f(b)=1;或者f(a)=0,f(b)=0;或者f(a)=1,f(b)=-1
所以有三种映射:
f(a)=-1,f(b)=1,f(c)=0;
f(a)=0,f(b)=0,f(c)=0;
f(a)=1,f(b)=-1,f(c)=0;
③f(c)=1
此时,f(a)=0,f(b)=1;或者f(a)=1,f(b)=0
所以有两种映射:
f(a)=0,f(b)=1,f(c)=1;
f(a)=1,f(b)=0,f(c)=1;
所以,满足要求的映射有2+3+2=7(个)
你有问题也可以在这里向我提问:
看了 已知集合M={a,b,c},...的网友还看了以下:
已知A={x∈N丨6/(6-x)∈N},使用列举法表示集合A.6/(6-x)可以=0吧,那么x=6 2020-05-15 …
一次函数y=kx+b的图像经过一、三、四象限,与X轴,y轴的交点分别是A(m,0) B(0,n)已 2020-05-16 …
已知集合M=(x/x^2+px+2=0)N=(x/x^2-x-q=0)已知M={x|x^2+px+ 2020-06-14 …
1.设{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75,Tn为数列{S 2020-06-27 …
新高一预习的呐、有好多不清楚、1.若A={1,2,3,4,5,6},B={2,4,6,8},记M- 2020-06-28 …
有关集合的数学题1.已知集合M={0,1,2},定义集合N={x|x∈M},这样的集合N的个数是2 2020-07-30 …
1.集合{z|z=i^n+i^(n-1,n属于z},用列举法表示该集合,这个集合是()A{0,2, 2020-08-01 …
关于一些集合的题~一.用列举法表示集合1.A={x∈N|6/6-x∈N}2.B={6/6-x∈N| 2020-08-01 …
1.数列{an}的前n项和记为Sn,已知a1=1,an+1(n+1是a的角标)=(n+2)/n×S 2020-08-02 …
已知x,y是正整数,且xy+x+y=23,x^2+xy^2=120,求x^2+y^2的值.设m=xy 2020-11-03 …