早教吧作业答案频道 -->数学-->
映射的题f(x)=ax^2+bx+c的图像经过原点且f(1)=1,f(-1)=-3若映射f:A-B其中A=B=R对应法则f;x--y=ax^2+bx+c对于实数k在B中,在集合A中存在两个不同的元素与之对应求k的范围
题目详情
映射的题
f(x)=ax^2+bx+c的图像经过原点且f(1)=1,f(-1)=-3若映射f:A-B其中A=B=R对应法则f;x--y=ax^2+bx+c对于实数k在B中,在集合A中存在两个不同的元素与之对应求k的范围
f(x)=ax^2+bx+c的图像经过原点且f(1)=1,f(-1)=-3若映射f:A-B其中A=B=R对应法则f;x--y=ax^2+bx+c对于实数k在B中,在集合A中存在两个不同的元素与之对应求k的范围
▼优质解答
答案和解析
由 f(0)=0 得 c=0 ;
由 f(1)=1 得 a+b+c=1 ;
由 f(-1)= -3 得 a-b+c= -3 ,
以上三式解得 a= -1 ,b=2 ,c=0 ,
因此 f(x)= -x^2+2x .
根据已知,-x^2+2x=k 有两个不同实根,
所以判别式为正,即 4-4k>0 ,
解得 k
由 f(1)=1 得 a+b+c=1 ;
由 f(-1)= -3 得 a-b+c= -3 ,
以上三式解得 a= -1 ,b=2 ,c=0 ,
因此 f(x)= -x^2+2x .
根据已知,-x^2+2x=k 有两个不同实根,
所以判别式为正,即 4-4k>0 ,
解得 k
看了 映射的题f(x)=ax^2+...的网友还看了以下:
1道高中函数映射题下列对应中是从集合A到集合B的映射的是.1、A=R,B=R,f:x→y=1\x+1 2020-03-31 …
A={x/x∈N},B={y/y∈R},则对应法则f:x→y=√x是不是映射请具体讲解(5)在下列对 2020-03-31 …
1.设集合A={a,b,c},B={0,1}.试问从A到B的映射共有几个?并将它们列出来2.设f: 2020-07-30 …
设a、b为常数,M={f(x)|f(x)=acosx+bsinx,x∈R};F:把平面上任意一点( 2020-07-30 …
定义映射:f:A(x,y)→B(x+根号3y,根号3-y),是否存在这样的直线l:若点A在直线l上 2020-07-30 …
数学分析中函数单调性问题设函数f在开区间(a,b)上定义,且对每一个点x∈(a,b)存在邻域U(x 2020-07-31 …
下列说法中不正确的是()。A.对于线性回归方程yˆ=bˆx+aˆ,直线必经过点(x¯,y¯)B.茎叶 2020-11-03 …
1.已知函数f(x)=3^x+x-5的零点x∈[a,b],且b-a=1,a,b∈正数则a+b=?2. 2020-12-08 …
如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径 2021-01-22 …
数学高一映射题对于映射f:(x,y)→(x+y,x-y)是否存在这样的一次函数对于映射f:(x,y) 2021-02-05 …