早教吧 育儿知识 作业答案 考试题库 百科 知识分享

用综合法证明:设a>0,b>0且a+b=1,则(a+(1/a))²+(b+(1/b))²≧25/2

题目详情
用综合法证明:设a>0,b>0且a+b=1,则(a+(1/a))²+(b+(1/b))²≧25/2
▼优质解答
答案和解析
(a+1/a)²+(b+1/b)²
=(a+1/a+b+1/b)²-2(a+1/a)(b+1/b)
=(1+1/ab)²-2(ab+a/b+b/a+1/ab)
=(1+1/ab)²-2[ab+(1+a²+b²)/ab]
=(1+1/ab)²-2[ab+(2-2ab)ab]
显然,随着ab值的增大,值会减小;
即ab取最大值时,(a+ 1/a)^2+(b+ 1/b)^2有最小值;
2ab