早教吧作业答案频道 -->数学-->
复数题:如果存在f(X)其指数都是实数,且a,b属于R如果f(a+bi)=0证明f(a-bi)=0
题目详情
复数题:如果存在f(X)其指数都是实数,且a,b 属于R 如果f(a+bi)=0证明f(a-bi)=0
▼优质解答
答案和解析
设函数f(x)=an*x^kn+an-1*x^kn-1+.+a1*x^k1+a0,ai表示指数为ki时的系数,ki表示大到小排列的实数指数.
由于对于任意的a+bi都存在t,使得:根号(a^2+b^2)*(cosm+isinm)=a+bi,m=arctan(b/a),为了方便运算,令根号(a^2+b^2)=t
那么f(a+bi)=f(t(cosm+isinm))=an*(t(cosm+isinm))^kn.
=an*t^kn(cosknm+isinknm).
整理有
原式=(an*t^kn(cosknm).+a1*t^k1(cosk1m)+a0)+i(an*t^kn(sinknm)+.+a1*t^k1*(sink1m))=0
前者为实部,后者为虚部,因为函数值为零,所以实部虚部都为0,而同理其共轭a-bi=t(cosm-isinm),带入可算出其值为零
由于对于任意的a+bi都存在t,使得:根号(a^2+b^2)*(cosm+isinm)=a+bi,m=arctan(b/a),为了方便运算,令根号(a^2+b^2)=t
那么f(a+bi)=f(t(cosm+isinm))=an*(t(cosm+isinm))^kn.
=an*t^kn(cosknm+isinknm).
整理有
原式=(an*t^kn(cosknm).+a1*t^k1(cosk1m)+a0)+i(an*t^kn(sinknm)+.+a1*t^k1*(sink1m))=0
前者为实部,后者为虚部,因为函数值为零,所以实部虚部都为0,而同理其共轭a-bi=t(cosm-isinm),带入可算出其值为零
看了 复数题:如果存在f(X)其指...的网友还看了以下:
证明连续性有函数F如果实数X0.那么F(X)=3利用函数连续性的定义证明F在0处不连续.第一个差不 2020-04-27 …
1:如图,用与竖直方向成30度角的力F将重为10N的物体推靠在光滑的竖直墙上,求当物体沿着墙匀速滑 2020-04-27 …
1,证明f(x)=-x平方+|x|的单调区间2,已知函数f(x)=x平方+2x+3/x(x属于[2 2020-05-21 …
一个关于求导数的答案不明白的地方求f(x)=2x^2+x-1(x>0)的反函数在x=2处的切线的斜 2020-06-06 …
设函数f(x)在x=0处连续,下列命题错误的是()A.若limx→0f(x)x存在,则f(0)=0 2020-06-12 …
A~J均为有机化合物,它们之间的转化如图所示:实验表明:①D既能发生银镜反应,又能与金属钠反应放出 2020-06-12 …
试证明:f(x)在x>=0上二阶可导,f(0)=lim(x趋近于正无穷)f(x)=0且f"(x)+ 2020-06-18 …
已知定义在R上的函数f(x)满足:①f(x+y)=f(x)+f(y)+1,②当x>0时,f(x)> 2020-07-29 …
已知,用数学归纳法证明f(2n)>f()时,f(2k+1)-f(2k)已知f(n)=1+1/2+1 2020-08-03 …
已知函数f(x)的定义域是(0,+∞),当x>1时,f(x)>0,且f(x·y)=f(x)+f(y) 2020-11-07 …