早教吧作业答案频道 -->数学-->
若Sn是数列an的前n项和,a1=3,2Sn=na(n+1)-n(n+1)(n+2)(1)求数列an的通项公式(2)证明:对一切正整数n,有12/a1+12/a2+.+12/an<7
题目详情
若Sn是数列an的前n项和,a1=3,2Sn=na(n+1)-n(n+1)(n+2)
(1)求数列an的通项公式
(2)证明:对一切正整数n,有12/a1+12/a2+.+12/an<7
(1)求数列an的通项公式
(2)证明:对一切正整数n,有12/a1+12/a2+.+12/an<7
▼优质解答
答案和解析
(1)
2Sn=na(n+1)-n(n+1)(n+2)
2Sn=n[S(n+1)-Sn]-n(n+1)(n+2)
nS(n+1)=(n+2)Sn+n(n+1)(n+2)
等式两边同除以n(n+1)(n+2)
S(n+1)/[(n+1)(n+2)]=Sn/[n(n+1)] +1
S(n+1)/[(n+1)(n+2)]-Sn/[n(n+1)]=1,为定值
S1/(1×2)=a1/(1×2)=3/2,数列{Sn/[n(n+1)]}是以3/2为首项,1为公差的等差数列
Sn/[n(n+1)]=3/2 +1×(n-1)=(2n+1)/2
Sn=n(n+1)(2n+1)/2
n≥2时,an=Sn-S(n-1)=n(n+1)(2n+1)/2 - n(n-1)(2n-1)/2=3n²
n=1时,a1=3×1²=3,同样满足通项公式
数列{an}的通项公式为an=3n²
2.
考察一般项:12/ak=12/(3k²)=4/k²
12/a1+12/a2+12/a3+12/a4+...+12/an
=4/(1/1²+1/2²+1/3²+1/4²...+1/n²)
0 4/n>0 7-4/n
2Sn=na(n+1)-n(n+1)(n+2)
2Sn=n[S(n+1)-Sn]-n(n+1)(n+2)
nS(n+1)=(n+2)Sn+n(n+1)(n+2)
等式两边同除以n(n+1)(n+2)
S(n+1)/[(n+1)(n+2)]=Sn/[n(n+1)] +1
S(n+1)/[(n+1)(n+2)]-Sn/[n(n+1)]=1,为定值
S1/(1×2)=a1/(1×2)=3/2,数列{Sn/[n(n+1)]}是以3/2为首项,1为公差的等差数列
Sn/[n(n+1)]=3/2 +1×(n-1)=(2n+1)/2
Sn=n(n+1)(2n+1)/2
n≥2时,an=Sn-S(n-1)=n(n+1)(2n+1)/2 - n(n-1)(2n-1)/2=3n²
n=1时,a1=3×1²=3,同样满足通项公式
数列{an}的通项公式为an=3n²
2.
考察一般项:12/ak=12/(3k²)=4/k²
12/a1+12/a2+12/a3+12/a4+...+12/an
=4/(1/1²+1/2²+1/3²+1/4²...+1/n²)
0 4/n>0 7-4/n
看了 若Sn是数列an的前n项和,...的网友还看了以下:
数列an/a(n-1)=n^2/(n^2-1)a1=1/2,a2=1/6 2020-05-21 …
已知数列{An}的前n项和为Sn,且满足An+2Sn*S(n-1)=0(n>=2),A1=1/2( 2020-06-03 …
等差数列的判定问题(一道)已知数列{an}的前n项和为Sn,且满足an=2S(n-1)Sn(n≥2 2020-06-03 …
计算n阶行列式丫灭跌!计算n阶行列式(n>2)Dn=a1+1a1+2···a1+na2+1a2+2 2020-06-26 …
已知Sn是数列{an}的前n项和,求证:若Sn=n/2*(an+a1),则{an}是等差数列,反之 2020-07-09 …
1.在等比数列{an}中,a3+a5=18,a9+a11=144,则a6+a8=?2.在数列中,已 2020-07-09 …
已知{an}是公比q>-1(q≠0)的等比数列,a1>0,bn=a(n+1)+a(n+2),An= 2020-07-29 …
已知数列{a(n)}满足的递推公式是a(n)+1/n=a(n-1)+1/n+1(n>=2)a1=2 2020-08-01 …
高中等差数列数列{an}满足递推公式an=3an-1+(3*n)-1(n≥2),又a1=5,则使得 2020-08-01 …
已知数列an满足递推公式:a(n+1)-2/an=an-2/a(n-1)(n>=2),a1=1,a 2020-08-01 …