早教吧作业答案频道 -->数学-->
如图,在正方形ABCD中,AD=8,点E是边CD上(不包括端点)的动点,AE的中垂线FG分别交AD,AE,BC于点F,H,K交AB的延长线于点G.(1)设DE=m,FHHK=t,用含m的代数式表示t;(2)当t=13时,求BG
题目详情

FH |
HK |
(2)当t=
1 |
3 |
FH |
HK |
t=
1 |
3 |
1 |
3 |
▼优质解答
答案和解析
(1)过点H作MN∥CD交AD,BC于M,N,则四边形ABNM是矩形,
∴MN=AB=AD,
∵FG是AE的中垂线,
∴H为AE的中点,
∴MH=
DE=
m,HN=8-
m,
∵AM∥BC,
∴FH:HK=HM:HN=(
m):(8-
m),
∴t=
.
(2)过点H作HT⊥AB于T,
当t=
时,
=
,解得m=4,即DE=4,
在Rt△ADE中,由勾股定理得,AE2=AD2+DE2=80,
∴AE=4
,
∴AH=
AE=2
,
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
,
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
1 1 12 2 2DE=
m,HN=8-
m,
∵AM∥BC,
∴FH:HK=HM:HN=(
m):(8-
m),
∴t=
.
(2)过点H作HT⊥AB于T,
当t=
时,
=
,解得m=4,即DE=4,
在Rt△ADE中,由勾股定理得,AE2=AD2+DE2=80,
∴AE=4
,
∴AH=
AE=2
,
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
,
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
1 1 12 2 2m,HN=8-
m,
∵AM∥BC,
∴FH:HK=HM:HN=(
m):(8-
m),
∴t=
.
(2)过点H作HT⊥AB于T,
当t=
时,
=
,解得m=4,即DE=4,
在Rt△ADE中,由勾股定理得,AE2=AD2+DE2=80,
∴AE=4
,
∴AH=
AE=2
,
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
,
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
1 1 12 2 2m,
∵AM∥BC,
∴FH:HK=HM:HN=(
m):(8-
m),
∴t=
.
(2)过点H作HT⊥AB于T,
当t=
时,
=
,解得m=4,即DE=4,
在Rt△ADE中,由勾股定理得,AE2=AD2+DE2=80,
∴AE=4
,
∴AH=
AE=2
,
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
,
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
1 1 12 2 2m):(8-
m),
∴t=
.
(2)过点H作HT⊥AB于T,
当t=
时,
=
,解得m=4,即DE=4,
在Rt△ADE中,由勾股定理得,AE2=AD2+DE2=80,
∴AE=4
,
∴AH=
AE=2
,
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
,
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
1 1 12 2 2m),
∴t=
.
(2)过点H作HT⊥AB于T,
当t=
时,
=
,解得m=4,即DE=4,
在Rt△ADE中,由勾股定理得,AE2=AD2+DE2=80,
∴AE=4
,
∴AH=
AE=2
,
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
,
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
m m m16−m 16−m 16−m.
(2)过点H作HT⊥AB于T,
当t=
时,
=
,解得m=4,即DE=4,
在Rt△ADE中,由勾股定理得,AE2=AD2+DE2=80,
∴AE=4
,
∴AH=
AE=2
,
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
,
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
1 1 13 3 3时,
=
,解得m=4,即DE=4,
在Rt△ADE中,由勾股定理得,AE2=AD2+DE2=80,
∴AE=4
,
∴AH=
AE=2
,
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
,
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
m m m16−m 16−m 16−m=
,解得m=4,即DE=4,
在Rt△ADE中,由勾股定理得,AE2=AD2+DE2=80,
∴AE=4
,
∴AH=
AE=2
,
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
,
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
1 1 13 3 3,解得m=4,即DE=4,
在Rt△ADE中,由勾股定理得,AE22=AD22+DE22=80,
∴AE=4
,
∴AH=
AE=2
,
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
,
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
5 5 5,
∴AH=
AE=2
,
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
,
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
1 1 12 2 2AE=2
,
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
,
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
5 5 5,
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
,
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
1 1 13 3 3,
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT22:AT.
在直角△AHT中,HT22=AH22-AT22=16,
∴HT=4,
∴TG=422÷2=8,
∴BG=TG-BT=8-6=2.

∴MN=AB=AD,
∵FG是AE的中垂线,
∴H为AE的中点,
∴MH=
1 |
2 |
1 |
2 |
1 |
2 |
∵AM∥BC,
∴FH:HK=HM:HN=(
1 |
2 |
1 |
2 |
∴t=
m |
16−m |
(2)过点H作HT⊥AB于T,
当t=
1 |
3 |
m |
16−m |
1 |
3 |
在Rt△ADE中,由勾股定理得,AE2=AD2+DE2=80,
∴AE=4
5 |
∴AH=
1 |
2 |
5 |
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
1 |
3 |
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
1 |
2 |
1 |
2 |
1 |
2 |
∵AM∥BC,
∴FH:HK=HM:HN=(
1 |
2 |
1 |
2 |
∴t=
m |
16−m |
(2)过点H作HT⊥AB于T,
当t=
1 |
3 |
m |
16−m |
1 |
3 |
在Rt△ADE中,由勾股定理得,AE2=AD2+DE2=80,
∴AE=4
5 |
∴AH=
1 |
2 |
5 |
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
1 |
3 |
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
1 |
2 |
1 |
2 |
∵AM∥BC,
∴FH:HK=HM:HN=(
1 |
2 |
1 |
2 |
∴t=
m |
16−m |
(2)过点H作HT⊥AB于T,
当t=
1 |
3 |
m |
16−m |
1 |
3 |
在Rt△ADE中,由勾股定理得,AE2=AD2+DE2=80,
∴AE=4
5 |
∴AH=
1 |
2 |
5 |
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
1 |
3 |
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
1 |
2 |
∵AM∥BC,
∴FH:HK=HM:HN=(
1 |
2 |
1 |
2 |
∴t=
m |
16−m |
(2)过点H作HT⊥AB于T,
当t=
1 |
3 |
m |
16−m |
1 |
3 |
在Rt△ADE中,由勾股定理得,AE2=AD2+DE2=80,
∴AE=4
5 |
∴AH=
1 |
2 |
5 |
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
1 |
3 |
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
1 |
2 |
1 |
2 |
∴t=
m |
16−m |
(2)过点H作HT⊥AB于T,
当t=
1 |
3 |
m |
16−m |
1 |
3 |
在Rt△ADE中,由勾股定理得,AE2=AD2+DE2=80,
∴AE=4
5 |
∴AH=
1 |
2 |
5 |
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
1 |
3 |
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
1 |
2 |
∴t=
m |
16−m |
(2)过点H作HT⊥AB于T,
当t=
1 |
3 |
m |
16−m |
1 |
3 |
在Rt△ADE中,由勾股定理得,AE2=AD2+DE2=80,
∴AE=4
5 |
∴AH=
1 |
2 |
5 |
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
1 |
3 |
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
m |
16−m |
(2)过点H作HT⊥AB于T,
当t=
1 |
3 |
m |
16−m |
1 |
3 |
在Rt△ADE中,由勾股定理得,AE2=AD2+DE2=80,
∴AE=4
5 |
∴AH=
1 |
2 |
5 |
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
1 |
3 |
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
1 |
3 |
m |
16−m |
1 |
3 |
在Rt△ADE中,由勾股定理得,AE2=AD2+DE2=80,
∴AE=4
5 |
∴AH=
1 |
2 |
5 |
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
1 |
3 |
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
m |
16−m |
1 |
3 |
在Rt△ADE中,由勾股定理得,AE2=AD2+DE2=80,
∴AE=4
5 |
∴AH=
1 |
2 |
5 |
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
1 |
3 |
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
1 |
3 |
在Rt△ADE中,由勾股定理得,AE22=AD22+DE22=80,
∴AE=4
5 |
∴AH=
1 |
2 |
5 |
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
1 |
3 |
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
5 |
∴AH=
1 |
2 |
5 |
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
1 |
3 |
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
1 |
2 |
5 |
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
1 |
3 |
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
5 |
∵AF∥HT∥BK,
∴AT:BT=FH:HK=t=
1 |
3 |
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT2:AT.
在直角△AHT中,HT2=AH2-AT2=16,
∴HT=4,
∴TG=42÷2=8,
∴BG=TG-BT=8-6=2.
1 |
3 |
∵AB=8,
∴AT=2,BT=6.
在直角△AHG中,HT⊥AG,
∴△AHT∽△HGT,
∴TH:TG=AT:HT,
∴TG=HT22:AT.
在直角△AHT中,HT22=AH22-AT22=16,
∴HT=4,
∴TG=422÷2=8,
∴BG=TG-BT=8-6=2.
看了如图,在正方形ABCD中,AD...的网友还看了以下:
圆锥曲线的已知椭圆C:x^2/2+y^2=1的右焦点为F,右准线为l,点A属于l,线段AF交C于点 2020-04-08 …
如图,在平面直角坐标系中,直线y=4/3x+4与x轴交于点A,与y轴交于点B,点C为y轴上一动点( 2020-05-16 …
如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点 2020-06-11 …
(2013•苏州)如图,已知抛物线y=12x2+bx+c(b,c是常数,且c<0)与x轴分别交于点 2020-06-14 …
已知,数轴上点A在原点左边,到原点的距离为8个单位长度,点B在原点的右边,从点A走到点B,要经过3 2020-06-19 …
一道普通应用题快点!点A和点B相距1800米点C和点B之间,点M到点A和点C距离相等,点N到点B和 2020-06-19 …
如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上 2020-07-02 …
如图,“中海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛瞧C上的 2020-07-02 …
(2013•菏泽)如图,数轴上的A、B、C三点所表示的数分别是a、b、c,其中AB=BC,如果|a 2020-07-21 …
如图,已知△ABC三个顶点的坐标分别为A(0,4),B(-1,1),C(-2,2),将△ABC向右 2020-08-02 …